Suppr超能文献

T-CLEARE:一个由社区驱动的组织透明化方案储存库试点项目。

T-CLEARE: A Pilot Community-Driven Tissue-Clearing Protocol Repository.

作者信息

Weiss Kurt, Huisken Jan, Bakalov Vesselina, Engle Michelle, Gridley Lauren, Krzyzanowski Michelle C, Madden Tom, Maiese Deborah, Waterfield Justin, Williams David, Wu Xin, Hamilton Carol M, Huggins Wayne

机构信息

Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA.

Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA.

出版信息

bioRxiv. 2023 Mar 12:2023.03.09.531970. doi: 10.1101/2023.03.09.531970.

Abstract

Selecting and implementing a tissue-clearing protocol is challenging. Established more than 100 years ago, tissue clearing is still a rapidly evolving field of research. There are currently many published protocols to choose from, and each performs better or worse across a range of key evaluation factors (e.g., speed, cost, tissue stability, fluorescence quenching). Additionally, tissue-clearing protocols are often optimized for specific experimental contexts, and applying an existing protocol to a new problem can require a lengthy period of adaptation by trial and error. Although the primary literature and review articles provide a useful starting point for optimization, there is growing recognition that many articles do not provide sufficient detail to replicate or reproduce experimental results. To help address this issue, we have developed a novel, freely available repository of tissue-clearing protocols named T-CLEARE (Tissue CLEAring protocol REpository; https://doryworkspace.org/doryviz). T-CLEARE incorporates community responses to an open survey designed to capture details not commonly found in the scientific literature, including modifications to published protocols required for specific use cases and instances when tissue-clearing protocols did not perform well (negative results). The goal of T-CLEARE is to provide a forum for the community to share evaluations and modifications of tissue-clearing protocols for various tissue types and potentially identify best-in-class methods for a given application.

摘要

选择并实施一种组织透明化方案具有挑战性。组织透明化技术早在100多年前就已确立,但至今仍是一个快速发展的研究领域。目前有许多已发表的方案可供选择,并且在一系列关键评估因素(如速度、成本、组织稳定性、荧光淬灭)方面,每种方案的表现各有优劣。此外,组织透明化方案通常是针对特定实验背景进行优化的,将现有方案应用于新问题可能需要通过反复试验进行长时间的调整。尽管原始文献和综述文章为优化提供了有用的起点,但人们越来越认识到,许多文章并未提供足够的细节来复制或重现实验结果。为了帮助解决这个问题,我们开发了一个名为T-CLEARE(组织透明化方案库;https://doryworkspace.org/doryviz)的新颖且免费的组织透明化方案库。T-CLEARE纳入了社区对一项开放式调查的反馈,该调查旨在收集科学文献中不常见的细节,包括针对特定用例对已发表方案的修改以及组织透明化方案效果不佳的情况(负面结果)。T-CLEARE的目标是为社区提供一个论坛,以分享针对各种组织类型的组织透明化方案的评估和修改,并有可能为特定应用确定最佳方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/10028991/868cc91d1e0c/nihpp-2023.03.09.531970v1-f0001.jpg

相似文献

8
Tutorial: practical considerations for tissue clearing and imaging.教程:组织透明化和成像的实际考量
Nat Protoc. 2021 Jun;16(6):2732-2748. doi: 10.1038/s41596-021-00502-8. Epub 2021 May 21.
9
Navigating across multi-dimensional space of tissue clearing parameters.穿越组织透明化参数的多维空间。
Methods Appl Fluoresc. 2021 Mar 11;9(2):022001. doi: 10.1088/2050-6120/abe6fb.
10
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验