Suppr超能文献

识别并克服模型蛋白质-蛋白质复合物相对结合自由能计算中的采样挑战。

Identifying and overcoming the sampling challenges in relative binding free energy calculations of a model protein:protein complex.

作者信息

Zhang Ivy, Rufa Dominic A, Pulido Iván, Henry Michael M, Rosen Laura E, Hauser Kevin, Singh Sukrit, Chodera John D

机构信息

Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065.

Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065.

出版信息

bioRxiv. 2023 Jun 21:2023.03.07.530278. doi: 10.1101/2023.03.07.530278.

Abstract

Relative alchemical binding free energy calculations are routinely used in drug discovery projects to optimize the affinity of small molecules for their drug targets. Alchemical methods can also be used to estimate the impact of amino acid mutations on protein:protein binding affinities, but these calculations can involve sampling challenges due to the complex networks of protein and water interactions frequently present in protein:protein interfaces. We investigate these challenges by extending a GPU-accelerated open-source relative free energy calculation package (Perses) to predict the impact of amino acid mutations on protein:protein binding. Using the well-characterized model system barnase:barstar, we describe analyses for identifying and characterizing sampling problems in protein:protein relative free energy calculations. We find that mutations with sampling problems often involve charge-changes, and inadequate sampling can be attributed to slow degrees of freedom that are mutation-specific. We also explore the accuracy and efficiency of current state-of-the-art approaches-alchemical replica exchange and alchemical replica exchange with solute tempering-for overcoming relevant sampling problems. By employing sufficiently long simulations, we achieve accurate predictions (RMSE 1.61, 95% CI: [1.12, 2.11] kcal/mol), with 86% of estimates within 1 kcal/mol of the experimentally-determined relative binding free energies and 100% of predictions correctly classifying the sign of the changes in binding free energies. Ultimately, we provide a model workflow for applying protein mutation free energy calculations to protein:protein complexes, and importantly, catalog the sampling challenges associated with these types of alchemical transformations. Our free open-source package (Perses) is based on OpenMM and available at https://github.com/choderalab/perses .

摘要

相对炼金术结合自由能计算在药物发现项目中经常被用于优化小分子对其药物靶点的亲和力。炼金术方法也可用于估计氨基酸突变对蛋白质:蛋白质结合亲和力的影响,但由于蛋白质:蛋白质界面中经常存在的蛋白质和水相互作用的复杂网络,这些计算可能涉及采样挑战。我们通过扩展一个GPU加速的开源相对自由能计算软件包(Perses)来研究这些挑战,以预测氨基酸突变对蛋白质:蛋白质结合的影响。使用特征明确的模型系统芽孢杆菌RNA酶:芽孢杆菌RNA酶抑制剂,我们描述了用于识别和表征蛋白质:蛋白质相对自由能计算中采样问题的分析方法。我们发现存在采样问题的突变通常涉及电荷变化,采样不足可归因于特定突变的缓慢自由度。我们还探讨了当前最先进的方法——炼金术副本交换和溶质回火炼金术副本交换——在克服相关采样问题方面的准确性和效率。通过进行足够长的模拟,我们实现了准确的预测(均方根误差为1.61,95%置信区间:[1.12, 2.11]千卡/摩尔),86%的估计值在实验确定的相对结合自由能的1千卡/摩尔范围内,100%的预测正确地对结合自由能变化的符号进行了分类。最终,我们提供了一个将蛋白质突变自由能计算应用于蛋白质:蛋白质复合物的模型工作流程,重要的是,编目了与这些类型的炼金术转化相关的采样挑战。我们的免费开源软件包(Perses)基于OpenMM,可在https://github.com/choderalab/perses获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验