Torres-Rodriguez Jeitzel M, Wilson Torri D, Singh Sudhuman, Chaudhry Sarah, Adke Anisha P, Becker Jordan J, Lin Jenny L, Martinez Gonzalez Santiago, Soler-Cedeño Omar, Carrasquillo Yarimar
National Center for Complementary and Integrative Health, Bethesda, MD, United States.
National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States.
bioRxiv. 2023 Feb 9:2023.02.08.527340. doi: 10.1101/2023.02.08.527340.
The spino-ponto-amygdaloid pathway is a major ascending circuit relaying nociceptive information from the spinal cord to the brain. Potentiation of excitatory synaptic transmission in the parabrachial nucleus (PbN) to central amygdala (CeA) pathway has been reported in rodent models of persistent pain. At the behavioral level, the PbN→CeA pathway has been proposed to serve as a general alarm system to potential threats that modulates pain-related escape behaviors, threat memory, aversion, and affective-motivational (but not somatosensory) responses to painful stimuli. Increased sensitivity to previously innocuous somatosensory stimulation is a hallmark of chronic pain. Whether the PbN→CeA circuit contributes to heightened peripheral sensitivity following an injury, however, remains unknown. Here, we demonstrate that activation of CeA-projecting PbN neurons contributes to injury-induced behavioral hypersensitivity but not baseline nociception in male and female mice. Using optogenetic assisted circuit mapping, we confirmed a functional excitatory projection from PbN→CeA that is independent of the genetic or firing identity of CeA cells. We then showed that peripheral noxious stimulation increases the expression of the neuronal activity marker c-Fos in CeA-projecting PbN neurons and chemogenetic inactivation of these cells reduces behavioral hypersensitivity in models of neuropathic and inflammatory pain without affecting baseline nociception. Lastly, we show that chemogenetic activation of CeA-projecting PbN neurons is sufficient to induce bilateral hypersensitivity without injury. Together, our results demonstrate that the PbN→CeA pathway is a key modulator of pain-related behaviors that can amplify responses to somatosensory stimulation in pathological states without affecting nociception under normal physiological conditions.
Early studies identified the spino-ponto-amygdaloid pathway as a major ascending circuit conveying nociceptive inputs from the spinal cord to the brain. The functional significance of this circuit to injury-induced hypersensitivity, however, remains unknown. Here, we addressed this gap in knowledge using viral-mediated anatomical tracers, electrophysiology and chemogenetic intersectional approaches in rodent models of persistent pain. We found that activation of this pathway contributes to injury-induced hypersensitivity, directly demonstrating a critical function of the PbN→CeA circuit in pain modulation.
脊髓-脑桥-杏仁核通路是一条主要的上行通路,负责将伤害性信息从脊髓传递至大脑。在持续性疼痛的啮齿动物模型中,已报道臂旁核(PbN)至中央杏仁核(CeA)通路的兴奋性突触传递增强。在行为层面,有人提出PbN→CeA通路作为一个针对潜在威胁的通用警报系统,可调节与疼痛相关的逃避行为、威胁记忆、厌恶以及对疼痛刺激的情感动机(而非躯体感觉)反应。对先前无害的躯体感觉刺激敏感性增加是慢性疼痛的一个标志。然而,PbN→CeA回路是否在损伤后导致外周敏感性增强仍不清楚。在此,我们证明激活投射至CeA的PbN神经元会导致雄性和雌性小鼠出现损伤诱导的行为超敏反应,但不会影响基线伤害感受。利用光遗传学辅助回路测绘,我们证实了从PbN→CeA存在功能性兴奋性投射,且该投射独立于CeA细胞的基因或放电特性。然后我们表明,外周伤害性刺激会增加投射至CeA的PbN神经元中神经元活动标记物c-Fos的表达,对这些细胞进行化学遗传学失活可降低神经性和炎性疼痛模型中的行为超敏反应,而不影响基线伤害感受。最后,我们表明对投射至CeA的PbN神经元进行化学遗传学激活足以在无损伤情况下诱导双侧超敏反应。总之,我们的结果表明PbN→CeA通路是疼痛相关行为的关键调节因子,在病理状态下可放大对躯体感觉刺激的反应,而在正常生理条件下不影响伤害感受。
早期研究确定脊髓-脑桥-杏仁核通路是一条主要的上行通路,可将伤害性输入从脊髓传递至大脑。然而,该回路对损伤诱导的超敏反应的功能意义仍不清楚。在此,我们在持续性疼痛的啮齿动物模型中,使用病毒介导的解剖示踪剂、电生理学和化学遗传学交叉方法填补了这一知识空白。我们发现该通路的激活会导致损伤诱导的超敏反应,直接证明了PbN→CeA回路在疼痛调节中的关键作用。