Green Gilad Sahar, Fujita Masashi, Yang Hyun-Sik, Taga Mariko, McCabe Cristin, Cain Anael, White Charles C, Schmidtner Anna K, Zeng Lu, Wang Yangling, Regev Aviv, Menon Vilas, Bennett David A, Habib Naomi, De Jager Philip L
bioRxiv. 2023 Mar 9:2023.03.07.531493. doi: 10.1101/2023.03.07.531493.
Alzheimer's Disease (AD) is a progressive neurodegenerative disease seen with advancing age. Recent studies have revealed diverse AD-associated cell states, yet when and how they impact the causal chain leading to AD remains unknown. To reconstruct the dynamics of the brain's cellular environment along the disease cascade and to distinguish between AD and aging effects, we built a comprehensive cell atlas of the aged prefrontal cortex from 1.64 million single-nucleus RNA-seq profiles. We associated glial, vascular and neuronal subpopulations with AD-related traits for 424 aging individuals, and aligned them along the disease cascade using causal modeling. We identified two distinct lipid-associated microglial subpopulations, one contributed to amyloid-β proteinopathy while the other mediated the effect of amyloid-β in accelerating tau proteinopathy, as well as an astrocyte subpopulation that mediated the effect of tau on cognitive decline. To model the coordinated dynamics of the entire cellular environment we devised the BEYOND methodology which uncovered two distinct trajectories of brain aging that are defined by distinct sequences of changes in cellular communities. Older individuals are engaged in one of two possible trajectories, each associated with progressive changes in specific cellular communities that end with: (1) AD dementia or (2) alternative brain aging. Thus, we provide a cellular foundation for a new perspective of AD pathophysiology that could inform the development of new therapeutic interventions targeting cellular communities, while designing a different clinical management for those individuals on the path to AD or to alternative brain aging.
阿尔茨海默病(AD)是一种随着年龄增长而出现的进行性神经退行性疾病。最近的研究揭示了多种与AD相关的细胞状态,但它们何时以及如何影响导致AD的因果链仍不清楚。为了重建疾病级联过程中大脑细胞环境的动态变化,并区分AD和衰老的影响,我们从164万个单核RNA测序图谱构建了老年前额叶皮质的综合细胞图谱。我们将424名老年个体的神经胶质细胞、血管细胞和神经元亚群与AD相关特征进行关联,并使用因果模型沿着疾病级联对它们进行排列。我们确定了两种不同的与脂质相关的小胶质细胞亚群,一种与淀粉样β蛋白病有关,而另一种介导淀粉样β在加速tau蛋白病中的作用,以及一种介导tau对认知衰退作用的星形胶质细胞亚群。为了模拟整个细胞环境的协调动态变化,我们设计了BEYOND方法,该方法揭示了由细胞群落变化的不同序列定义的两种不同的大脑衰老轨迹。老年个体参与两种可能的轨迹之一,每种轨迹都与特定细胞群落的渐进性变化相关,最终导致:(1)AD痴呆或(2)替代性大脑衰老。因此,我们为AD病理生理学的新观点提供了细胞基础,这可能为针对细胞群落的新治疗干预措施的开发提供信息,同时为那些走向AD或替代性大脑衰老的个体设计不同的临床管理方案。