Suppr超能文献

Cyclone:一个用于分析、评估和优化多参数细胞计数数据的便捷流程。

Cyclone: an accessible pipeline to analyze, evaluate and optimize multiparametric cytometry data.

作者信息

Patel Ravi K, Jaszczak Rebecca G, Kwok Im, Carey Nicholas D, Courau Tristan, Bunis Daniel, Samad Bushra, Avanesyan Lia, Chew Nayvin W, Stenske Sarah, Jespersen Jillian M, Publicover Jean, Edwards Austin, Naser Mohammad, Rao Arjun A, Lupin-Jimenez Leonard, Krummel Matthew F, Cooper Stewart, Baron Jody, Combes Alexis J, Fragiadakis Gabriela K

出版信息

bioRxiv. 2023 Mar 11:2023.03.08.531782. doi: 10.1101/2023.03.08.531782.

Abstract

In the past decade, high-dimensional single cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation which are computationally intense and difficult to evaluate and optimize. Here we present Cyclone, an analysis pipeline integrating dimensionality reduction, clustering, evaluation and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification, but also enables the unsupervised identification of lymphocytes and mononuclear phagocytes subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on variety of cytometry datasets which will further power immunology research and provide a scaffold for biological discovery.

摘要

在过去十年中,高维单细胞技术彻底改变了基础免疫学和转化免疫学研究,如今已成为科学家研究免疫系统的工具包中的关键要素。然而,分析这些方法产生的数据通常需要聚类算法和降维表示,这在计算上强度很大,并且难以评估和优化。在此,我们展示了Cyclone,这是一个分析流程,集成了降维、聚类、聚类分辨率的评估与优化,以及下游可视化工具,便于对广泛的细胞计数数据进行分析。我们在多种生物学背景下,包括传染病和癌症,对Cyclone在质谱流式细胞术(CyTOF)、基于全光谱荧光的细胞计数法以及多重免疫荧光(IF)方面进行了基准测试和验证。在每种情况下,Cyclone不仅重现了金标准免疫细胞识别,还能够无监督地识别与不同生物学特征相关的淋巴细胞和单核吞噬细胞亚群。总之,Cyclone流程是一个多功能且易于使用的流程,用于在各种细胞计数数据集上执行、优化和评估聚类,这将进一步推动免疫学研究,并为生物学发现提供一个框架。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验