Suppr超能文献

鉴定独脚金内酯途径新的潜在下游转录靶点,包括硫代葡萄糖苷生物合成。

Identification of new potential downstream transcriptional targets of the strigolactone pathway including glucosinolate biosynthesis.

作者信息

Hellens Alicia M, Chabikwa Tinashe G, Fichtner Franziska, Brewer Philip B, Beveridge Christine A

机构信息

School of Biological Sciences University of Queensland St. Lucia Queensland Australia.

ARC Centre for Plant Success in Nature and Agriculture The University of Queensland St Lucia Queensland Australia.

出版信息

Plant Direct. 2023 Mar 19;7(3):e486. doi: 10.1002/pld3.486. eCollection 2023 Mar.

Abstract

Strigolactones regulate shoot branching and many aspects of plant growth, development, and allelopathy. Strigolactones are often discussed alongside auxin because they work together to inhibit shoot branching. However, the roles and mechanisms of strigolactones and how they act independently of auxin are still elusive. Additionally, there is still much in general to be discovered about the network of molecular regulators and their interactions in response to strigolactones. Here, we conducted an experiment in Arabidopsis with physiological treatments and strigolactone mutants to determine transcriptional pathways associated with strigolactones. The three physiological treatments included shoot tip removal with and without auxin treatment and treatment of intact plants with the auxin transport inhibitor, -1-naphthylphthalamic acid (NPA). We identified the glucosinolate biosynthesis pathway as being upregulated across strigolactone mutants indicating strigolactone-glucosinolate crosstalk. Additionally, strigolactone application cannot restore the highly branched phenotype observed in glucosinolate biosynthesis mutants, placing glucosinolate biosynthesis downstream of strigolactone biosynthesis. Oxidative stress genes were enriched across the experiment suggesting that this process is mediated through multiple hormones. Here, we also provide evidence supporting non-auxin-mediated, negative feedback on strigolactone biosynthesis. Increases in strigolactone biosynthesis gene expression seen in strigolactone mutants could not be fully restored by auxin. By contrast, auxin could fully restore auxin-responsive gene expression increases, but not sugar signaling-related gene expression. Our data also point to alternative roles of the strigolactone biosynthesis genes and potential new signaling functions of strigolactone precursors. In this study, we identify a strigolactone-specific regulation of glucosinolate biosynthesis genes indicating that the two are linked and may work together in regulating stress and shoot ranching responses in Arabidopsis. Additionally, we provide evidence for non-auxinmediated feedback on strigolactone biosynthesis and discuss this in the context of sugar signaling.

摘要

独脚金内酯调节枝条分枝以及植物生长、发育和化感作用的许多方面。独脚金内酯常与生长素一起被讨论,因为它们共同作用抑制枝条分枝。然而,独脚金内酯的作用和机制以及它们如何独立于生长素发挥作用仍然不清楚。此外,关于分子调节因子网络及其对独脚金内酯响应的相互作用,总体上仍有许多有待发现的地方。在这里,我们在拟南芥中进行了一项实验,采用生理处理和独脚金内酯突变体来确定与独脚金内酯相关的转录途径。三种生理处理包括有或没有生长素处理的茎尖去除,以及用生长素运输抑制剂 -1-萘基邻苯二甲酸(NPA)处理完整植株。我们发现硫代葡萄糖苷生物合成途径在独脚金内酯突变体中上调,表明独脚金内酯 - 硫代葡萄糖苷之间存在相互作用。此外,施加独脚金内酯不能恢复硫代葡萄糖苷生物合成突变体中观察到的高度分枝表型,这表明硫代葡萄糖苷生物合成在独脚金内酯生物合成的下游。整个实验中氧化应激基因富集,表明这个过程是由多种激素介导的。在这里,我们还提供了支持对独脚金内酯生物合成进行非生长素介导的负反馈的证据。在独脚金内酯突变体中观察到的独脚金内酯生物合成基因表达增加不能被生长素完全恢复。相比之下,生长素可以完全恢复生长素响应基因表达的增加,但不能恢复糖信号相关基因的表达。我们的数据还指出了独脚金内酯生物合成基因的其他作用以及独脚金内酯前体潜在的新信号功能。在这项研究中,我们确定了硫代葡萄糖苷生物合成基因的独脚金内酯特异性调节,表明两者相关联,并且可能共同作用调节拟南芥中的胁迫和枝条分枝反应。此外,我们提供了对独脚金内酯生物合成进行非生长素介导反馈的证据,并在糖信号的背景下进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da6/10024969/9f798a924bd1/PLD3-7-e486-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验