Suppr超能文献

基于多模态磁共振协议的自监督学习注意力融合网络在股骨头坏死(ONFH)分期中的应用。

Attention fusion network with self-supervised learning for staging of osteonecrosis of the femoral head (ONFH) using multiple MR protocols.

机构信息

Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea.

Department of Radiology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Republic of Korea.

出版信息

Med Phys. 2023 Sep;50(9):5528-5540. doi: 10.1002/mp.16380. Epub 2023 Mar 30.

Abstract

BACKGROUND

Osteonecrosis of the femoral head (ONFH) is characterized as bone cell death in the hip joint, involving a severe pain in the groin. The staging of ONFH is commonly based on Magnetic resonance imaging and computed tomography (CT), which are important for establishing effective treatment plans. There have been some attempts to automate ONFH staging using deep learning, but few of them used only MR images.

PURPOSE

To propose a deep learning model for MR-only ONFH staging, which can reduce additional cost and radiation exposure from the acquisition of CT images.

METHODS

We integrated information from the MR images of five different imaging protocols by a newly proposed attention fusion method, which was composed of intra-modality attention and inter-modality attention. In addition, a self-supervised learning was used to learn deep representations from a large amount of paired MR-CT dataset. The encoder part of the MR-CT translation network was used as a pretraining network for the staging, which aimed to overcome the lack of annotated data for staging. Ablation studies were performed to investigate the contributions of each proposed method. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the performance of the networks.

RESULTS

Our model improved the performance of the four-way classification of the association research circulation osseous (ARCO) stage using MR images of the multiple protocols by 6.8%p in AUROC over a plain VGG network. Each proposed method increased the performance by 4.7%p (self-supervised learning) and 2.6%p (attention fusion) in AUROC, which was demonstrated by the ablation experiments.

CONCLUSIONS

We have shown the feasibility of the MR-only ONFH staging by using self-supervised learning and attention fusion. A large amount of paired MR-CT data in hospitals can be used to further improve the performance of the staging, and the proposed method has potential to be used in the diagnosis of various diseases that require staging from multiple MR protocols.

摘要

背景

股骨头坏死(ONFH)的特征是髋关节骨细胞死亡,伴有腹股沟严重疼痛。ONFH 的分期通常基于磁共振成像和计算机断层扫描(CT),这对于制定有效的治疗计划非常重要。已经有一些尝试使用深度学习来自动分期 ONFH,但很少有仅使用 MR 图像的尝试。

目的

提出一种仅使用 MR 图像的 ONFH 分期深度学习模型,可减少因获取 CT 图像而增加的成本和辐射暴露。

方法

我们通过一种新提出的注意力融合方法整合了来自五种不同成像方案的 MR 图像信息,该方法由内模态注意力和外模态注意力组成。此外,使用自监督学习从大量配对的 MR-CT 数据集学习深度表示。MR-CT 翻译网络的编码器部分被用作分期的预训练网络,旨在克服分期缺乏注释数据的问题。进行了消融研究以探讨每种所提出方法的贡献。接收器操作特征曲线下的面积(AUROC)用于评估网络的性能。

结果

我们的模型通过在 AUROC 上比普通 VGG 网络提高了多方案 MR 图像的关联研究循环骨(ARCO)阶段的四向分类性能 6.8%p。通过消融实验证明,每个所提出的方法都通过自监督学习提高了 4.7%p 的性能,通过注意力融合提高了 2.6%p 的性能。

结论

我们通过使用自监督学习和注意力融合证明了仅使用 MR 进行 ONFH 分期的可行性。医院中大量配对的 MR-CT 数据可用于进一步提高分期的性能,并且该方法有可能用于需要从多种 MR 方案进行分期的各种疾病的诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验