Bach Michael, Aberle Christoph, Depeursinge Adrien, Jimenez-Del-Toro Oscar, Schaer Roger, Flouris Kyriakos, Konukoglu Ender, Müller Henning, Stieltjes Bram, Obmann Markus M
Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
University of Applied Sciences Western Switzerland (HES-SO) Valais, Sierre, Switzerland.
Med Phys. 2023 Sep;50(9):5682-5697. doi: 10.1002/mp.16373. Epub 2023 Apr 1.
To test and validate novel CT techniques, such as texture analysis in radiomics, repeat measurements are required. Current anthropomorphic phantoms lack fine texture and true anatomic representation. 3D-printing of iodinated ink on paper is a promising phantom manufacturing technique. Previously acquired or artificially created CT data can be used to generate realistic phantoms.
To present the design process of an anthropomorphic 3D-printed iodine ink phantom, highlighting the different advantages and pitfalls in its use. To analyze the phantom's X-ray attenuation properties, and the influences of the printing process on the imaging characteristics, by comparing it to the original input dataset.
Two patient CT scans and artificially generated test patterns were combined in a single dataset for phantom printing and cropped to a size of 26 × 19 × 30 cm . This DICOM dataset was printed on paper using iodinated ink. The phantom was CT-scanned and compared to the original image dataset used for printing the phantom. The water-equivalent diameter of the phantom was compared to that of a patient cohort (N = 104). Iodine concentrations in the phantom were measured using dual-energy CT. 86 radiomics features were extracted from 10 repeat phantom scans and the input dataset. Features were compared using a histogram analysis and a PCA individually and overall, respectively. The frequency content was compared using the normalized spectrum modulus.
Low density structures are depicted incorrectly, while soft tissue structures show excellent visual accordance with the input dataset. Maximum deviations of around 30 HU between the original dataset and phantom HU values were observed. The phantom has X-ray attenuation properties comparable to a lightweight adult patient (∼54 kg, BMI 19 kg/m ). Iodine concentrations in the phantom varied between 0 and 50 mg/ml. PCA of radiomics features shows different tissue types separate in similar areas of PCA representation in the phantom scans as in the input dataset. Individual feature analysis revealed systematic shift of first order radiomics features compared to the original dataset, while some higher order radiomics features did not. The normalized frequency modulus |f(ω)| of the phantom data agrees well with the original data. However, all frequencies systematically occur more frequently in the phantom compared to the maximum of the spectrum modulus than in the original data set, especially for mid-frequencies (e.g., for ω = 0.3942 mm , |f(ω)| = 0.09 * |f | and |f(ω)| = 0.12 * |f | ).
3D-iodine-ink-printing technology can be used to print anthropomorphic phantoms with a water-equivalent diameter of a lightweight adult patient. Challenges include small residual air enclosures and the fidelity of HU values. For soft tissue, there is a good agreement between the HU values of the phantom and input data set. Radiomics texture features of the phantom scans are similar to the input data set, but systematic shifts of radiomics features in first order features, due to differences in HU values, need to be considered. The paper substrate influences the spatial frequency distribution of the phantom scans. This phantom type is of very limited use for dual-energy CT analyses.
为了测试和验证新型CT技术,如放射组学中的纹理分析,需要进行重复测量。当前的人体模型缺乏精细纹理和真实的解剖结构表现。在纸上进行碘造影剂墨水的3D打印是一种很有前景的模型制造技术。先前获取的或人工创建的CT数据可用于生成逼真的模型。
介绍一种人体3D打印碘造影剂墨水模型的设计过程,突出其使用中的不同优点和缺陷。通过将模型与原始输入数据集进行比较,分析模型的X射线衰减特性以及打印过程对成像特征的影响。
将两份患者CT扫描数据和人工生成的测试图案合并到一个数据集中用于模型打印,并裁剪为26×19×30 cm的尺寸。该DICOM数据集使用碘造影剂墨水打印在纸上。对模型进行CT扫描,并与用于打印模型的原始图像数据集进行比较。将模型的水等效直径与一组患者(N = 104)的水等效直径进行比较。使用双能CT测量模型中的碘浓度。从10次重复的模型扫描和输入数据集中提取86个放射组学特征。分别使用直方图分析和主成分分析(PCA)对特征进行单独和整体比较。使用归一化频谱模量比较频率含量。
低密度结构描绘不正确,而软组织结构与输入数据集显示出极佳的视觉一致性。观察到原始数据集与模型HU值之间最大偏差约为30 HU。该模型的X射线衰减特性与体重较轻的成年患者(约54 kg,BMI 19 kg/m²)相当。模型中的碘浓度在0至50 mg/ml之间变化。放射组学特征的PCA显示,在模型扫描和输入数据集中,不同组织类型在PCA表示的相似区域中分离。个体特征分析显示,与原始数据集相比,一阶放射组学特征存在系统性偏移,而一些高阶放射组学特征则没有。模型数据的归一化频率模量|f(ω)|与原始数据吻合良好。然而,与原始数据集相比,模型中所有频率在频谱模量最大值处的出现频率均系统性地更高,尤其是中频(例如,对于ω = 0.3942 mm⁻¹,|f(ω)| = 0.09 * |f₀| 且 |f(ω)| = 0.12 * |f₀| )。
3D碘造影剂墨水打印技术可用于打印水等效直径与体重较轻的成年患者相当的人体模型。挑战包括小的残留空气包和HU值的保真度。对于软组织,模型的HU值与输入数据集之间有良好的一致性。模型扫描的放射组学纹理特征与输入数据集相似,但由于HU值的差异,需要考虑一阶特征中放射组学特征的系统性偏移。纸质基底会影响模型扫描的空间频率分布。这种模型类型在双能CT分析中的用途非常有限。