Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA.
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA.
Nanoscale. 2023 Apr 27;15(16):7280-7291. doi: 10.1039/d2nr07173h.
Diblock copolymers have been shown to undergo microphase separation due to an interplay of repulsive interactions between dissimilar monomers, which leads to the stretching of chains and entropic loss due to the stretching. In thin films, additional effects due to confinement and monomer-surface interactions make microphase separation much more complicated than in that in bulks (, without substrates). Previously, physics-based models have been used to interpret and extract various interaction parameters from the specular neutron reflectivities of annealed thin films containing diblock copolymers (J. P. Mahalik, J. W. Dugger, S. W. Sides, B. G. Sumpter, V. Lauter and R. Kumar, Interpreting neutron reflectivity profiles of diblock copolymer nanocomposite thin films using hybrid particle-field simulations, , 2018, (8), 3116; J. P. Mahalik, W. Li, A. T. Savici, S. Hahn, H. Lauter, H. Ambaye, B. G. Sumpter, V. Lauter and R. Kumar, Dispersity-driven stabilization of coexisting morphologies in asymmetric diblock copolymer thin films, , 2021, (1), 450). However, extracting Flory-Huggins parameters characterizing monomer-monomer, monomer-substrate, and monomer-air interactions has been labor-intensive and prone to errors, requiring the use of alternative methods for practical purposes. In this work, we have developed such an alternative method by employing a multi-layer perceptron, an autoencoder, and a variational autoencoder. These neural networks are used to extract interaction parameters not only from neutron scattering length density profiles constructed using self-consistent field theory-based simulations, but also from a noisy model constructed previously. In particular, the variational autoencoder is shown to be the most promising tool when it comes to the reconstruction and extraction of parameters from an neutron scattering length density profile of a thin film containing a symmetric di-block copolymer (poly(deuterated styrene--butyl methacrylate)). This work paves the way for automated analysis of specular neutron reflectivities from thin films of copolymers using machine learning tools.
两亲嵌段共聚物由于不同单体之间的排斥相互作用而发生微相分离,这导致链的拉伸和拉伸引起的熵损失。在薄膜中,由于受限和单体-表面相互作用的额外影响,微相分离比在本体(无基底)中复杂得多。以前,基于物理的模型已被用于解释和从包含嵌段共聚物的退火薄膜的镜面中子反射率中提取各种相互作用参数(J. P. Mahalik,J. W. Dugger,S. W. Sides,B. G. Sumpter,V. Lauter 和 R. Kumar,使用混合粒子-场模拟解释和提取嵌段共聚物纳米复合材料薄膜的镜面中子反射率曲线, ,2018 年,(8),3116 ;J. P. Mahalik,W. Li,A. T. Savici,S. Hahn,H. Lauter,H. Ambaye,B. G. Sumpter,V. Lauter 和 R. Kumar,不对称嵌段共聚物薄膜中共存形态的分散体驱动稳定化, ,2021 年,(1),450)。然而,提取表征单体-单体、单体-基底和单体-空气相互作用的 Flory-Huggins 参数一直是劳动密集型且容易出错的,需要为实际目的使用替代方法。在这项工作中,我们通过使用多层感知器、自动编码器和变分自动编码器开发了这样一种替代方法。这些神经网络不仅可以从基于自洽场理论的模拟构建的中子散射密度剖面中提取相互作用参数,还可以从先前构建的噪声模型中提取相互作用参数。特别是,变分自动编码器在从含有对称二嵌段共聚物(聚(氘代苯乙烯-丁基甲基丙烯酸酯))的薄膜的镜面中子散射密度剖面中进行重建和提取参数方面显示出最有前途的工具。这项工作为使用机器学习工具对聚合物薄膜的镜面中子反射率进行自动分析铺平了道路。