Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
Elife. 2023 Mar 22;12:e80669. doi: 10.7554/eLife.80669.
is the leading cause of community-acquired pneumonia and an important cause of childhood mortality. Despite the introduction of successful vaccines, the global spread of both non-vaccine serotypes and antibiotic-resistant strains reinforces the development of alternative therapies against this pathogen. One possible route is the development of monoclonal antibodies (mAbs) that induce killing of bacteria via the immune system. Here, we investigate whether mAbs can be used to induce killing of pneumococcal serotypes for which the current vaccines show unsuccessful protection. Our study demonstrates that when human mAbs against pneumococcal capsule polysaccharides (CPS) have a poor capacity to induce complement activation, a critical process for immune protection against pneumococci, their activity can be strongly improved by hexamerization-enhancing mutations. Our data indicate that anti-capsular antibodies may have a low capacity to form higher-order oligomers (IgG hexamers) that are needed to recruit complement component C1. Indeed, specific point mutations in the IgG-Fc domain that strengthen hexamerization strongly enhance C1 recruitment and downstream complement activation on encapsulated pneumococci. Specifically, hexamerization-enhancing mutations E430G or E345K in CPS6-IgG strongly potentiate complement activation on strains that express capsular serotype 6 (CPS6), and the highly invasive serotype 19A strain. Furthermore, these mutations improve complement activation via mAbs recognizing CPS3 and CPS8 strains. Importantly, hexamer-enhancing mutations enable mAbs to induce strong opsonophagocytic killing by human neutrophils. Finally, passive immunization with CPS6-IgG1-E345K protected mice from developing severe pneumonia. Altogether, this work provides an important proof of concept for future optimization of antibody therapies against encapsulated bacteria.
是社区获得性肺炎的主要病因,也是儿童死亡的重要原因。尽管成功开发了疫苗,但非疫苗血清型和抗生素耐药菌株在全球范围内的传播,加剧了针对这种病原体的替代疗法的发展。一种可能的途径是开发诱导免疫系统杀死细菌的单克隆抗体 (mAb)。在这里,我们研究了 mAb 是否可用于诱导当前疫苗保护不成功的肺炎球菌血清型的杀伤。我们的研究表明,当针对肺炎球菌荚膜多糖 (CPS) 的人源 mAb 诱导补体激活的能力较差时,这是针对肺炎球菌的免疫保护的关键过程,其活性可以通过六聚体增强突变得到显著改善。我们的数据表明,抗荚膜抗体可能形成低能力的高阶寡聚体(IgG 六聚体),这是招募补体成分 C1 所必需的。事实上,在 IgG-Fc 结构域中发生的特定点突变可增强六聚体形成,从而强烈增强对包被肺炎球菌的 C1 募集和下游补体激活。具体而言,CPS6-IgG 中的六聚体增强突变 E430G 或 E345K 可强烈增强表达荚膜血清型 6 (CPS6) 和高侵袭性血清型 19A 菌株的补体激活。此外,这些突变通过识别 CPS3 和 CPS8 菌株的 mAb 增强补体激活。重要的是,六聚体增强突变使 mAb 能够诱导人中性粒细胞进行强烈的调理吞噬杀伤。最后,用 CPS6-IgG1-E345K 进行被动免疫可保护小鼠免受严重肺炎的侵害。总而言之,这项工作为针对包被细菌的抗体疗法的未来优化提供了重要的概念验证。