Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.
Hepatology. 2023 Jul 1;78(1):88-102. doi: 10.1097/HEP.0000000000000047. Epub 2023 Jan 3.
Gut microbiota are recognized to be important for anticancer therapy, yet the underlying mechanism is not clear. Here, through the analysis of clinical samples, we identify the mechanism by which the gut microbial metabolite butyrate inhibits HCC and then explore new strategies for HCC treatment.
In our study, we demonstrate that gut microbial metabolite butyrate improves anticancer therapy efficacy by regulating intracellular calcium homeostasis. Using liquid chromatography-mass spectrometry analysis, we found that butyrate metabolism is activated in HCC patients compared with healthy individuals. Butyrate levels are lower in the plasma of HCC patients by gas chromatography-mass spectrometry (GC-MS) analysis. Butyrate supplementation or depletion of short-chain Acyl-CoA dehydrogenase (SCAD) gene (ACADS), encoding a key enzyme for butyrate metabolism, significantly inhibits HCC proliferation and metastasis. The profiling analysis of genes upregulated by butyrate supplementation or ACADS knockdown reveals that calcium signaling pathway is activated, leading to dysregulation of intracellular calcium homeostasis and production of reactive oxygen species. Butyrate supplementation improves the therapy efficacy of a tyrosine kinase inhibitor sorafenib. On the basis of these findings, we developed butyrate and sorafenib coencapsulated mPEG-PLGA-PLL nanoparticles coated with anti-GPC3 antibody (BS@PEAL-GPC3) to prolong the retention time of drugs and enhance drug targeting, leading to high anticancer efficacy. BS@PEAL-GPC3 nanoparticles significantly reduce HCC progression. In addition, BS@PEAL-GPC3 nanoparticles display excellent HCC targeting with excellent safety.
In conclusion, our findings provide new insight into the mechanism by which the gut microbial metabolites inhibit HCC progression, suggesting a translatable therapeutics approach to enhance the clinical targeted therapeutic efficacy.
肠道微生物群被认为对癌症治疗很重要,但作用机制尚不清楚。在此,我们通过分析临床样本,确定了肠道微生物代谢物丁酸抑制 HCC 的机制,然后探索了 HCC 治疗的新策略。
在我们的研究中,我们证明肠道微生物代谢物丁酸通过调节细胞内钙稳态来提高抗癌治疗效果。通过液相色谱-质谱分析,我们发现丁酸代谢在 HCC 患者中比健康个体更活跃。通过气相色谱-质谱(GC-MS)分析发现,HCC 患者的血浆中丁酸水平较低。丁酸补充或敲低编码丁酸代谢关键酶短链酰基辅酶 A 脱氢酶(SCAD)基因(ACADS)都会显著抑制 HCC 的增殖和转移。丁酸补充或 ACADS 敲低上调基因的谱分析表明,钙信号通路被激活,导致细胞内钙稳态失调和活性氧的产生。丁酸补充可提高酪氨酸激酶抑制剂索拉非尼的治疗效果。基于这些发现,我们开发了丁酸和索拉非尼共包封的 mPEG-PLGA-PLL 纳米粒子,用抗 GPC3 抗体(BS@PEAL-GPC3)包被,以延长药物的保留时间并增强药物靶向性,从而提高抗癌效果。BS@PEAL-GPC3 纳米粒子显著减缓 HCC 进展。此外,BS@PEAL-GPC3 纳米粒子具有出色的 HCC 靶向性和良好的安全性。
总之,我们的研究结果为肠道微生物代谢物抑制 HCC 进展的机制提供了新的见解,提示了一种可转化的治疗方法,以增强临床靶向治疗效果。