Lyu Xianglong, Zheng Zhiqiang, Shiva Anitha, Han Mertcan, Dayan Cem Balda, Zhang Mingchao, Sitti Metin
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
Nat Commun. 2024 Aug 6;15(1):6693. doi: 10.1038/s41467-024-51086-2.
High-precision additive manufacturing technologies, such as two-photon polymerization, are mainly limited to photo-curable polymers and currently lacks the possibility to produce multimaterial components. Herein, we report a physically bottom-up assembly strategy that leverages capillary force to trap various nanomaterials and assemble them onto three-dimensional (3D) microscaffolds. This capillary-trapping strategy enables precise and uniform assembly of nanomaterials into versatile 3D microstructures with high uniformity and mass loading. Our approach applies to diverse materials irrespective of their physiochemical properties, including polymers, metals, metal oxides, and others. It can integrate at least four different material types into a single 3D microstructure in a sequential, layer-by-layer manner, opening immense possibilities for tailored functionalities on demand. Furthermore, the 3D microscaffolds are removable, facilitating the creation of pure material-based 3D microstructures. This universal 3D micro-/nanofabrication technique with various nanomaterials enables the creation of advanced miniature devices with potential applications in multifunctional microrobots and smart micromachines.
高精度增材制造技术,如双光子聚合技术,主要局限于光固化聚合物,目前缺乏生产多材料组件的可能性。在此,我们报告一种物理自下而上的组装策略,该策略利用毛细作用力捕获各种纳米材料,并将它们组装到三维(3D)微支架上。这种毛细捕获策略能够将纳米材料精确且均匀地组装成具有高均匀性和高负载量的多功能3D微结构。我们的方法适用于各种材料,无论其物理化学性质如何,包括聚合物、金属、金属氧化物等。它可以以逐层顺序的方式将至少四种不同的材料类型整合到单个3D微结构中,为按需定制功能开辟了巨大的可能性。此外,3D微支架是可移除的,便于创建基于纯材料的3D微结构。这种使用各种纳米材料的通用3D微/纳米制造技术能够制造出先进的微型设备,在多功能微型机器人和智能微机器中具有潜在应用。