Yao Danwen, Yu Dongxu, Yao Shiyu, Lu Ziheng, Li Guoxiao, Xu Huailiang, Du Fei
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China.
ACS Appl Mater Interfaces. 2023 Apr 5;15(13):16584-16592. doi: 10.1021/acsami.2c20075. Epub 2023 Mar 22.
Zinc metal is emerging as the promising anode for aqueous Zn-ion batteries. However, corrosion and undesirable Zn dendrite growth limit their practical application in the large-scale energy storage area. Herein, a mountain-valley micro/nanostructure is successfully fabricated on the surface of the Zn anode via a femtosecond-laser filament texturing (FsLFT) technique. Beneficial from the large surface area and spontaneously generated ZnO coating layer, the FsLFT-Zn electrode demonstrates a slow corrosion rate with a current density of 0.62 mA cm and a stable cycle life over 3000 h under 1 mA cm, superior to the original Zn anode. Simulation of the electric fields reveals that the enlarged surface area is responsible for the outstanding performance of the FsLFT-Zn electrode. This study not only proposes a novel strategy to suppress dendrite growth toward highly stable AZIBs but also opens a new avenue to solve similar issues in other metal batteries.
锌金属正成为水性锌离子电池中颇具前景的负极材料。然而,腐蚀和不良的锌枝晶生长限制了它们在大规模储能领域的实际应用。在此,通过飞秒激光丝织构化(FsLFT)技术在锌负极表面成功制备了一种山谷状微/纳米结构。得益于大表面积和自发形成的氧化锌涂层,FsLFT-Zn电极在电流密度为0.62 mA/cm²时显示出缓慢的腐蚀速率,并且在1 mA/cm²下具有超过3000小时的稳定循环寿命,优于原始锌负极。电场模拟表明,增大的表面积是FsLFT-Zn电极优异性能的原因。这项研究不仅提出了一种抑制枝晶生长以实现高度稳定的水系锌离子电池的新策略,还为解决其他金属电池中的类似问题开辟了一条新途径。