Wu Zhenzhen, Li Meng, Tian Yuhui, Chen Hao, Zhang Shao-Jian, Sun Chuang, Li Chengpeng, Kiefel Milton, Lai Chao, Lin Zhan, Zhang Shanqing
Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia.
Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
Nanomicro Lett. 2022 Apr 19;14(1):110. doi: 10.1007/s40820-022-00846-0.
Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(HO)(CHD)] complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm, 1000 h at 5 mA cm, and 650 h at 10 mA cm at the fixed capacity of 1 mAh cm. When matched with VO cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g with the capacity retention of 92% after 2000 cycles under 2 A g. Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage.
水系锌离子电池(AZIBs)因其不燃、低成本和可持续性,可能成为最具前景的电化学储能装置之一。然而,要在实际应用中实现高循环性能和稳定性,必须克服AZIBs面临的挑战,包括充电和放电过程中锌阳极的枝晶生长、析氢、腐蚀和钝化。在这项工作中,我们利用双功能有机添加剂环己烷十二醇(CHD),首先在水系锌电解质中建立[Zn(HO)(CHD)]复合离子,其次在锌表面构建一层坚固的保护层,以克服这些难题。通过系统的实验和理论计算来解释CHD的工作机制。在0.1 mg mL CHD的极低浓度下,在1 mAh cm的固定容量下,在2 mA cm时可实现长达2200 h的长期可逆锌电镀/剥离,在5 mA cm时为1000 h,在10 mA cm时为650 h。当与VO阴极匹配时,所得的采用CHD改性电解质的AZIBs全电池在2 A g下2000次循环后具有175 mAh g的高容量和92%的容量保持率。这样的性能能够使AZIBs商业化,用于电网储能和工业储能应用。