Kamilar Elizabeth, Bariwal Jitender, Zheng Wan, Ma Hairong, Liang Hongjun
Department of Cell Physiology & Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.
Biomacromolecules. 2023 Apr 10;24(4):1819-1838. doi: 10.1021/acs.biomac.3c00034. Epub 2023 Mar 22.
Amphipathic styrene-maleic acid (SMA) copolymers directly solubilize biomembranes into SMA-lipid particles, or SMALPs, that are often regarded as nanodiscs and hailed as a native membrane platform. The promising outlook of SMALPs inspires the discovery of many SMA-like copolymers that also solubilize biomembranes into putative nanodiscs, but a fundamental question remains on how much the SMALPs or SMALP analogues truly resemble the bilayer structure of nanodiscs. This unfortunate ambiguity undermines the utility of SMA or SMA-like copolymers in membrane biology because the structure and function of many membrane proteins depend critically on their surrounding matrices. Here, we report the structural heterogeneity of SMALPs revealed through fractionating SMALPs comprised of lipids and well-defined SMAs via size-exclusion chromatography followed by quantitative determination of the polymer-to-lipid (/) stoichiometric ratios in individual fractions. Through the lens of / stoichiometric ratios, different self-assembled polymer-lipid nanostructures are inferred, such as polymer-remodeled liposomes, polymer-encased nanodiscs, polymer-lipid mixed micelles, and lipid-doped polymer micellar aggregates. We attribute the structural heterogeneity of SMALPs to the microstructure variations amongst individual polymer chains that give rise to their polydisperse detergency. As an example, we demonstrate that SMAs with a similar /MA ratio but different chain sizes participate preferentially in different polymer-lipid nanostructures. We further demonstrate that proteorhodopsin, a light-driven proton pump solubilized within the same SMALPs is distributed amongst different self-assembled nanostructures to display different photocycle kinetics. Our discovery challenges the native nanodisc notion of SMALPs or SMALP analogues and highlights the necessity to separate and identify the structurally dissimilar polymer-lipid particles in membrane biology studies.
两亲性苯乙烯 - 马来酸(SMA)共聚物可直接将生物膜溶解成SMA - 脂质颗粒,即SMALP,通常被视为纳米圆盘,并被誉为天然膜平台。SMALP的前景广阔,激发了人们对许多类似SMA共聚物的探索,这些共聚物也能将生物膜溶解成假定的纳米圆盘,但一个基本问题仍然存在:SMALP或其类似物与纳米圆盘的双层结构究竟有多相似。这种令人遗憾的模糊性削弱了SMA或类似SMA共聚物在膜生物学中的实用性,因为许多膜蛋白的结构和功能严重依赖于其周围的基质。在此,我们报告了通过尺寸排阻色谱法分离由脂质和明确的SMA组成的SMALP,并随后定量测定各个组分中聚合物与脂质(/)的化学计量比所揭示的SMALP的结构异质性。通过/化学计量比的视角,可以推断出不同的自组装聚合物 - 脂质纳米结构,例如聚合物重塑的脂质体、聚合物包裹的纳米圆盘、聚合物 - 脂质混合胶束以及脂质掺杂的聚合物胶束聚集体。我们将SMALP的结构异质性归因于各个聚合物链之间的微观结构差异,这导致了它们的多分散去污能力。例如,我们证明具有相似/MA比但不同链尺寸的SMA优先参与不同的聚合物 - 脂质纳米结构。我们进一步证明,溶解在相同SMALP中的光驱动质子泵视紫红质分布在不同的自组装纳米结构中,以显示不同的光循环动力学。我们的发现挑战了SMALP或其类似物的天然纳米圆盘概念,并强调了在膜生物学研究中分离和识别结构不同的聚合物 - 脂质颗粒的必要性。