Suppr超能文献

解析噻唑烷-4-酮类α-淀粉酶抑制剂的结构片段:结合使用体外比色筛选和基于 GA-MLR 的 QSAR 建模,辅以分子对接、分子动力学模拟和 ADMET 研究的综合方法。

Parsing structural fragments of thiazolidin-4-one based α-amylase inhibitors: A combined approach employing in vitro colorimetric screening and GA-MLR based QSAR modelling supported by molecular docking, molecular dynamics simulation and ADMET studies.

机构信息

Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India.

Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India.

出版信息

Comput Biol Med. 2023 May;157:106776. doi: 10.1016/j.compbiomed.2023.106776. Epub 2023 Mar 15.

Abstract

α-Amylase (EC.3.2.1.1) is a ubiquitous digestive endoamylase. The abrupt rise in blood glucose levels due to the hydrolysis of carbohydrates by α-amylase at a faster rate is one of the main reasons for type 2 diabetes. The inhibitors prevent the action of digestive enzymes, slowing the digestion of carbs and eventually assisting in the management of postprandial hyperglycemia. In the course of developing α-amylase inhibitors, we have screened 2-aryliminothiazolidin-4-one based analogs for their in vitro α-amylase inhibitory potential and employed various in silico approaches for the detailed exploration of the bioactivity. The DNSA bioassay revealed that compounds 5c, 5e, 5h, 5j, 5m, 5o and 5t were more potent than the reference drug (IC value = 22.94 ± 0.24 μg mL). The derivative 5o with -NO group at both the rings was the most potent analog with an IC value of 19.67 ± 0.20 μg mL whereas derivative 5a with unsubstituted aromatic rings showed poor inhibitory potential with an IC value of 33.40 ± 0.15 μg mL. The reliable QSAR models were developed using the QSARINS software. The high value of R = 0.9632 for model IM-9 showed that the built model can be applied to predict the α-amylase inhibitory activity of the untested molecules. A consensus modelling approach was also employed to test the reliability and robustness of the developed QSAR models. Molecular docking and molecular dynamics were employed to validate the bioassay results by studying the conformational changes and interaction mechanisms. A step further, these compounds also exhibited good ADMET characteristics and bioavailability when tested for in silico pharmacokinetics prediction parameters.

摘要

α-淀粉酶(EC.3.2.1.1)是一种普遍存在的消化内淀粉酶。由于α-淀粉酶更快地水解碳水化合物导致血糖水平突然升高,这是 2 型糖尿病的主要原因之一。抑制剂可以阻止消化酶的作用,减缓碳水化合物的消化,最终有助于管理餐后高血糖。在开发α-淀粉酶抑制剂的过程中,我们筛选了基于 2-芳基亚氨基噻唑烷-4-酮的类似物,以评估它们的体外α-淀粉酶抑制潜力,并采用了各种计算方法对其生物活性进行了详细的研究。DNSA 生物测定法表明,化合物 5c、5e、5h、5j、5m、5o 和 5t 比参考药物(IC 值=22.94±0.24μg mL)更有效。带有两个环上的-NO 基团的衍生物 5o 是最有效的类似物,IC 值为 19.67±0.20μg mL,而带有未取代芳环的衍生物 5a 显示出较差的抑制潜力,IC 值为 33.40±0.15μg mL。可靠的 QSAR 模型是使用 QSARINS 软件建立的。模型 IM-9 的高 R 值(R=0.9632)表明,所建立的模型可以用于预测未经测试的分子的α-淀粉酶抑制活性。还采用共识建模方法来测试所开发的 QSAR 模型的可靠性和稳健性。通过研究构象变化和相互作用机制,分子对接和分子动力学也被用来验证生物测定结果。更进一步,这些化合物在进行计算机药物代谢动力学预测参数测试时也表现出良好的 ADMET 特性和生物利用度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验