Suppr超能文献

不同温度下多种挥发性有机化合物臭氧化反应的定量构效关系模型

QSAR models for the ozonation of diverse volatile organic compounds at different temperatures.

作者信息

Azimi Ali, Ahmadi Shahin, Javan Marjan Jebeli, Rouhani Morteza, Mirjafary Zohreh

机构信息

Department of Chemistry, Science and Research Branch, Islamic Azad University Tehran Iran.

Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran

出版信息

RSC Adv. 2024 Mar 7;14(12):8041-8052. doi: 10.1039/d3ra08805g. eCollection 2024 Mar 6.

Abstract

In order to assess the fate and persistence of volatile organic compounds (VOCs) in the atmosphere, it is necessary to determine their oxidation rate constants for their reaction with ozone (). However, given that experimental values of are only available for a few hundred compounds and their determination is expensive and time-consuming, developing predictive models for is of great importance. Thus, this study aimed to develop reliable quantitative structure-activity relationship (QSAR) models for 302 values of 149 VOCs across a broad temperature range (178-409 K). The model was constructed based on the combination of a simplified molecular-input line-entry system (SMILES) and temperature as an experimental condition, namely quasi-SMILES. In this study, temperature was incorporated in the models as an independent feature. The hybrid optimal descriptor generated from the combination of quasi-SMILES and HFG (hydrogen-filled graph) was used to develop reliable, accurate, and predictive QSAR models employing the CORAL software. The balance between the correlation method and four different target functions (target function without considering IIC or CII, target function using each IIC or CII, and target function based on the combination of IIC and CII) was used to improve the predictability of the QSAR models. The performance of the developed models based on different target functions was compared. The correlation intensity index (CII) significantly enhanced the predictability of the model. The best model was selected based on the numerical value of of the calibration set (split #1, = 0.9834, = 0.9276, = 0.9136, and calibration = 0.8770). The promoters of increase/decrease for log  were also computed based on the best model. The presence of a double bond (BOND10000000 and $10 000 000 000), absence of halogen (HALO00000000), and the nearest neighbor codes for carbon equal to 321 (NNC-C⋯321) are some significant promoters of endpoint increase.

摘要

为了评估挥发性有机化合物(VOCs)在大气中的归宿和持久性,有必要确定它们与臭氧反应的氧化速率常数()。然而,鉴于仅几百种化合物有实验值,且其测定既昂贵又耗时,因此开发预测模型至关重要。因此,本研究旨在针对149种VOCs在178 - 409 K的宽温度范围内的302个值建立可靠的定量构效关系(QSAR)模型。该模型基于简化分子输入线性表记系统(SMILES)与温度作为实验条件的组合构建,即准SMILES。在本研究中,温度作为一个独立特征纳入模型。由准SMILES和HFG(氢填充图)组合生成的混合最优描述符用于利用CORAL软件开发可靠、准确且具有预测性的QSAR模型。利用相关方法与四种不同目标函数(不考虑IIC或CII的目标函数、使用每个IIC或CII的目标函数以及基于IIC和CII组合的目标函数)之间的平衡来提高QSAR模型的预测能力。比较了基于不同目标函数开发的模型的性能。相关强度指数(CII)显著提高了模型的预测能力。基于校准集的(分割#1,= 0.9834,= 0.9276,= 0.9136,校准 = 0.8770)数值选择了最佳模型。还基于最佳模型计算了log的增减促进因子。双键的存在(BOND10000000和$10 000 000 000)、卤素的不存在(HALO00000000)以及碳的最近邻代码等于321(NNC - C⋯321)是终点增加的一些重要促进因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d42/10918768/940fa221c371/d3ra08805g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验