Suppr超能文献

利用深度学习模型,我们能在多大程度上解读蛋白质进化?

How deep can we decipher protein evolution with deep learning models.

作者信息

Fu Xiaozhi

机构信息

Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden.

出版信息

Patterns (N Y). 2024 Aug 9;5(8):101043. doi: 10.1016/j.patter.2024.101043.

Abstract

Evolutionary-based machine learning models have emerged as a fascinating approach to mapping the landscape for protein evolution. Lian et al. demonstrated that evolution-based deep generative models, specifically variational autoencoders, can organize SH3 homologs in a hierarchical latent space, effectively distinguishing the specific Sho1 domains.

摘要

基于进化的机器学习模型已成为一种描绘蛋白质进化图景的迷人方法。Lian等人证明,基于进化的深度生成模型,特别是变分自编码器,可以在分层潜在空间中组织SH3同源物,有效区分特定的Sho1结构域。

相似文献

1
How deep can we decipher protein evolution with deep learning models.
Patterns (N Y). 2024 Aug 9;5(8):101043. doi: 10.1016/j.patter.2024.101043.
2
Deep-learning-based design of synthetic orthologs of SH3 signaling domains.
Cell Syst. 2024 Aug 21;15(8):725-737.e7. doi: 10.1016/j.cels.2024.07.005. Epub 2024 Aug 5.
4
Optimizing Few-Shot Learning Based on Variational Autoencoders.
Entropy (Basel). 2021 Oct 24;23(11):1390. doi: 10.3390/e23111390.
6
An Overview of Deep Generative Models in Functional and Evolutionary Genomics.
Annu Rev Biomed Data Sci. 2023 Aug 10;6:173-189. doi: 10.1146/annurev-biodatasci-020722-115651. Epub 2023 May 3.
7
ProtWave-VAE: Integrating Autoregressive Sampling with Latent-Based Inference for Data-Driven Protein Design.
ACS Synth Biol. 2023 Dec 15;12(12):3544-3561. doi: 10.1021/acssynbio.3c00261. Epub 2023 Nov 21.
8
Latent generative landscapes as maps of functional diversity in protein sequence space.
Nat Commun. 2023 Apr 19;14(1):2222. doi: 10.1038/s41467-023-37958-z.
9
Learning Hierarchical Variational Autoencoders With Mutual Information Maximization for Autoregressive Sequence Modeling.
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1949-1962. doi: 10.1109/TPAMI.2022.3160509. Epub 2023 Jan 6.
10
Comparative Study of Deep Generative Models on Chemical Space Coverage.
J Chem Inf Model. 2021 Jun 28;61(6):2572-2581. doi: 10.1021/acs.jcim.0c01328. Epub 2021 May 20.

本文引用的文献

1
Deep-learning-based design of synthetic orthologs of SH3 signaling domains.
Cell Syst. 2024 Aug 21;15(8):725-737.e7. doi: 10.1016/j.cels.2024.07.005. Epub 2024 Aug 5.
2
Clustering predicted structures at the scale of the known protein universe.
Nature. 2023 Oct;622(7983):637-645. doi: 10.1038/s41586-023-06510-w. Epub 2023 Sep 13.
3
Latent generative landscapes as maps of functional diversity in protein sequence space.
Nat Commun. 2023 Apr 19;14(1):2222. doi: 10.1038/s41467-023-37958-z.
4
Machine learning for evolutionary-based and physics-inspired protein design: Current and future synergies.
Curr Opin Struct Biol. 2023 Jun;80:102571. doi: 10.1016/j.sbi.2023.102571. Epub 2023 Mar 21.
5
Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity.
Nat Commun. 2022 Dec 21;13(1):7850. doi: 10.1038/s41467-022-35237-x.
6
Ig-VAE: Generative modeling of protein structure by direct 3D coordinate generation.
PLoS Comput Biol. 2022 Jun 27;18(6):e1010271. doi: 10.1371/journal.pcbi.1010271. eCollection 2022 Jun.
7
Learning the protein language: Evolution, structure, and function.
Cell Syst. 2021 Jun 16;12(6):654-669.e3. doi: 10.1016/j.cels.2021.05.017.
8
Deciphering protein evolution and fitness landscapes with latent space models.
Nat Commun. 2019 Dec 10;10(1):5644. doi: 10.1038/s41467-019-13633-0.
9
Advances and Applications in the Quest for Orthologs.
Mol Biol Evol. 2019 Oct 1;36(10):2157-2164. doi: 10.1093/molbev/msz150.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验