Suppr超能文献

一种自适应联合 CCA-ICA 方法用于去除眼动伪迹及其在情绪分类中的应用。

An adaptive joint CCA-ICA method for ocular artifact removal and its application to emotion classification.

机构信息

School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China; Institute for Advanced Sciences, Chongqing University of Posts and Communications, China.

Clinical Hospital of Chengdu Brain Science In-stitute, MOE Key Lab for Neuroinformation and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.

出版信息

J Neurosci Methods. 2023 Apr 15;390:109841. doi: 10.1016/j.jneumeth.2023.109841. Epub 2023 Mar 21.

Abstract

BACKGROUND

The quality of Electroencephalogram (EEG) signals is critical for revealing the neural mechanism of emotions. However, ocular artifacts decreased the signal to noise ratio (SNR) and covered the inherent cognitive component of EEGs, which pose a great challenge in neuroscience research.

NEW METHOD

We proposed a novel unsupervised learning algorithm to adaptively remove the ocular artifacts by combining canonical correlation analysis (CCA), independent component analysis (ICA), higher-order statistics, empirical mode decomposition (EMD), and wavelet denoising techniques. Specifically, the combination of CCA and ICA aimed to improve the quality of source separation, while the higher-order statistics further located the source of ocular artifacts. Subsequently, these noised sources were further corrected by EMD and wavelet denoising to improve SNR of EEG signals.

RESULTS

We evaluated the performance of our proposed method with simulation studies and real EEG applications. The results of simulation study showed our proposed method could significantly improve the quality of signals under almost all noise conditions compared to four state-of-art methods. Consistently, the experiments of real EEG applications showed that the proposed methods could efficiently restrict the components of ocular artifacts and preserve the inherent information of cognition processing to improve the reliability of related analysis such as power spectral density (PSD) and emotion recognition.

COMPARISON WITH EXISTING METHODS

Our proposed model outperforms the comparative methods in EEG recovery, which further improve the application performance such as PSD analysis and emotion recognition.

CONCLUSIONS

The superior performance of our proposed method suggests that it is promising for removing ocular artifacts from EEG signals, which offers an efficient EEG preprocessing technology for the development of brain computer interface such as emotion recognition.

摘要

背景

脑电图 (EEG) 信号的质量对于揭示情感的神经机制至关重要。然而,眼动伪迹会降低信号噪声比 (SNR),并掩盖 EEG 固有的认知成分,这在神经科学研究中是一个巨大的挑战。

新方法

我们提出了一种新的无监督学习算法,通过结合典型相关分析 (CCA)、独立成分分析 (ICA)、高阶统计、经验模态分解 (EMD) 和小波去噪技术,自适应地去除眼动伪迹。具体来说,CCA 和 ICA 的结合旨在提高源分离的质量,而高阶统计进一步定位眼动伪迹的源。随后,通过 EMD 和小波去噪对这些噪声源进行进一步修正,以提高 EEG 信号的 SNR。

结果

我们通过模拟研究和真实 EEG 应用评估了我们提出的方法的性能。模拟研究的结果表明,与四种最先进的方法相比,我们提出的方法在几乎所有噪声条件下都能显著提高信号质量。一致地,真实 EEG 应用的实验表明,该方法可以有效地限制眼动伪迹的成分,并保留认知处理的固有信息,以提高相关分析(如功率谱密度 (PSD) 和情感识别)的可靠性。

与现有方法的比较

我们提出的模型在 EEG 恢复方面优于比较方法,这进一步提高了 PSD 分析和情感识别等应用性能。

结论

我们提出的方法的优越性能表明,它有望从 EEG 信号中去除眼动伪迹,为情绪识别等脑机接口的发展提供高效的 EEG 预处理技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验