Suppr超能文献

重度抑郁症和广泛性焦虑症部分住院期间症状轨迹的潜在类别。

Latent classes of symptom trajectories during partial hospitalization for major depressive disorder and generalized anxiety disorder.

作者信息

Terrill Douglas R, Dellavella Christian, King Brittany T, Hubert Troy, Wild Hannah, Zimmerman Mark

机构信息

Department of Psychology, University of Kentucky, United States of America.

Rhode Island Hospital Department of Psychiatry, United States of America; Department of Psychiatry and Human Behavior, Brown Alpert Medical School, Providence, RI, United States of America.

出版信息

J Affect Disord. 2023 Jun 15;331:101-111. doi: 10.1016/j.jad.2023.03.036. Epub 2023 Mar 21.

Abstract

BACKGROUND

A variety of treatments have been empirically validated in the treatment of major depressive disorder and generalized anxiety disorder. Researchers commonly evaluate symptom change during treatment using single model curves, however, modeling multiple curves simultaneously allows for the identification of subgroups of patients that progress through treatment on distinct paths.

METHODS

Latent growth mixture modeling was used to identify and characterize distinct classes of symptom trajectories among two samples of patients with either MDD or GAD receiving treatment in a daily partial hospital program.

RESULTS

Four depression symptom trajectories were identified in the MDD sample, and three anxiety symptom trajectories were identified in the GAD sample. Both samples shared symptom trajectory classes of responders, rapid responders, and minimal responders, while the MDD sample demonstrated an additional class of early rapid responders. In both samples, low symptom severity at baseline was associated with membership in the responder class, though few other patterns emerged in baseline characteristics predicting trajectory class membership. At treatment discharge, those in the minimal responder class reported poorer outcomes on every clinical measure. Patients within each class reported similar scores at discharge as compared to each other class, indicating that class membership affects clinical measures beyond symptom severity.

LIMITATIONS

Patient demographic characteristics were relatively homogeneous. Group-based trajectory modeling inherently involves some degree of uncertainty regarding the number and shape of trajectories.

CONCLUSIONS

Identifying symptom trajectories can provide information regarding how patients are likely to progress through treatment, and thus inform clinicians when a patient deviates from expected progress.

摘要

背景

多种治疗方法已在重度抑郁症和广泛性焦虑症的治疗中得到经验验证。研究人员通常使用单一模型曲线评估治疗期间的症状变化,然而,同时对多条曲线进行建模能够识别出在治疗过程中沿着不同路径进展的患者亚组。

方法

使用潜在增长混合模型来识别和描述在每日部分住院项目中接受治疗的重度抑郁症或广泛性焦虑症患者的两个样本中不同类别的症状轨迹。

结果

在重度抑郁症样本中识别出四种抑郁症状轨迹,在广泛性焦虑症样本中识别出三种焦虑症状轨迹。两个样本都有反应者、快速反应者和最小反应者的症状轨迹类别,而重度抑郁症样本还显示出一类早期快速反应者。在两个样本中,基线时症状严重程度低与属于反应者类别相关,尽管在预测轨迹类别归属的基线特征中几乎没有出现其他模式。在治疗出院时,最小反应者类别中的患者在各项临床指标上的结果都较差。与其他类别相比,每个类别中的患者出院时报告的分数相似,这表明类别归属会影响除症状严重程度之外的临床指标。

局限性

患者人口统计学特征相对同质。基于组的轨迹建模在轨迹数量和形状方面固有地涉及一定程度的不确定性。

结论

识别症状轨迹可以提供有关患者在治疗过程中可能如何进展的信息,从而在患者偏离预期进展时为临床医生提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验