Suppr超能文献

以多模态方式在分子水平及更高层面预测乳腺癌类型。

Predicting breast cancer types on and beyond molecular level in a multi-modal fashion.

作者信息

Zhang Tianyu, Tan Tao, Han Luyi, Appelman Linda, Veltman Jeroen, Wessels Ronni, Duvivier Katya M, Loo Claudette, Gao Yuan, Wang Xin, Horlings Hugo M, Beets-Tan Regina G H, Mann Ritse M

机构信息

Department of Radiology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.

GROW School for Oncology and Development Biology, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, The Netherlands.

出版信息

NPJ Breast Cancer. 2023 Mar 22;9(1):16. doi: 10.1038/s41523-023-00517-2.

Abstract

Accurately determining the molecular subtypes of breast cancer is important for the prognosis of breast cancer patients and can guide treatment selection. In this study, we develop a deep learning-based model for predicting the molecular subtypes of breast cancer directly from the diagnostic mammography and ultrasound images. Multi-modal deep learning with intra- and inter-modality attention modules (MDL-IIA) is proposed to extract important relations between mammography and ultrasound for this task. MDL-IIA leads to the best diagnostic performance compared to other cohort models in predicting 4-category molecular subtypes with Matthews correlation coefficient (MCC) of 0.837 (95% confidence interval [CI]: 0.803, 0.870). The MDL-IIA model can also discriminate between Luminal and Non-Luminal disease with an area under the receiver operating characteristic curve of 0.929 (95% CI: 0.903, 0.951). These results significantly outperform clinicians' predictions based on radiographic imaging. Beyond molecular-level test, based on gene-level ground truth, our method can bypass the inherent uncertainty from immunohistochemistry test. This work thus provides a noninvasive method to predict the molecular subtypes of breast cancer, potentially guiding treatment selection for breast cancer patients and providing decision support for clinicians.

摘要

准确确定乳腺癌的分子亚型对于乳腺癌患者的预后至关重要,并且可以指导治疗方案的选择。在本研究中,我们开发了一种基于深度学习的模型,用于直接从乳腺钼靶诊断图像和超声图像预测乳腺癌的分子亚型。为此任务,我们提出了具有模态内和模态间注意力模块的多模态深度学习(MDL-IIA),以提取乳腺钼靶和超声之间的重要关系。与其他队列模型相比,MDL-IIA在预测4种类别分子亚型时具有最佳诊断性能,马修斯相关系数(MCC)为0.837(95%置信区间[CI]:0.803,0.870)。MDL-IIA模型还能够以0.929的受试者工作特征曲线下面积(95%CI:0.903,0.951)区分管腔型和非管腔型疾病。这些结果显著优于临床医生基于放射影像学的预测。除了分子水平测试外,基于基因水平的真实情况,我们的方法可以绕过免疫组织化学测试中固有的不确定性。因此,这项工作提供了一种非侵入性方法来预测乳腺癌的分子亚型,有可能指导乳腺癌患者的治疗选择,并为临床医生提供决策支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82cf/10033710/77a6036f51e7/41523_2023_517_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验