Suppr超能文献

优化纳洛酮的分发以预防阿片类药物过量死亡:在注射毒品者服务项目中试行系统分析和改进方法的结果。

Optimizing naloxone distribution to prevent opioid overdose fatalities: results from piloting the Systems Analysis and Improvement Approach within syringe service programs.

机构信息

Center for Behavioral Health Epidemiology, Implementation, and Evaluation Research, Community Health Research Division, RTI International, 3040 E. Cornwallis Rd, Research Triangle Park, NC, 27709, USA.

Department of Global Health, University of Washington, Seattle, WA, USA.

出版信息

BMC Health Serv Res. 2023 Mar 22;23(1):278. doi: 10.1186/s12913-023-09289-8.

Abstract

BACKGROUND

Opioid overdose fatalities are preventable with timely administration of naloxone, an opioid antagonist, during an opioid overdose event. Syringe service programs have pioneered naloxone distribution for potential bystanders of opioid overdose. The objective of this study was to pilot test a multi-component implementation strategy-the systems analysis and improvement approach for naloxone (SAIA-Naloxone)-with the goal of improving naloxone distribution by syringe service programs.

METHODS

Two syringe service programs participated in a 6-month pilot of SAIA-Naloxone, which included (1) analyzing program data to identify gaps in the naloxone delivery cascade, (2) flow mapping to identify causes of attrition and brainstorm programmatic changes for improvement, and (3) conducting continuous quality improvement to test and assess whether modifications improve the cascade. We conducted an interrupted time series analysis using 52 weeks of data before and 26 weeks of data after initiating SAIA-Naloxone. Poisson regression was used to evaluate the association between SAIA-Naloxone and the weekly number of participants receiving naloxone and number of naloxone doses distributed.

RESULTS

Over the course of the study, 11,107 doses of naloxone were distributed to 6,071 participants. Through SAIA-Naloxone, syringe service programs prioritized testing programmatic modifications to improve data collection procedures, proactively screen and identify naloxone-naïve participants, streamline naloxone refill systems, and allow for secondary naloxone distribution. SAIA-Naloxone was associated with statistically significant increases in the average number of people receiving naloxone per week (37% more SPP participants; 95% CI, 12% to 67%) and average number of naloxone doses distributed per week (105% more naloxone doses; 95% CI, 79% to 136%) beyond the underlying pre-SAIA-Naloxone levels. These initial increases were extended by ongoing positive changes over time (1.6% more SSP participants received naloxone and 0.3% more naloxone doses were distributed in each subsequent week compared to the weekly trend in the pre-SAIA Naloxone period).

CONCLUSIONS

SAIA-Naloxone has strong potential for improving naloxone distribution from syringe service programs. These findings are encouraging in the face of the worsening opioid overdose crisis in the United States and support testing SAIA-Naloxone in a large-scale randomized trial within syringe service programs.

摘要

背景

纳洛酮是一种阿片类拮抗剂,在阿片类药物过量事件中及时使用可以预防阿片类药物过量导致的死亡。注射毒品者服务项目率先为阿片类药物过量的潜在旁观者分发纳洛酮。本研究的目的是用系统分析和改进纳洛酮方法(SAIA-Naloxone)对多部分实施策略进行试点测试,以提高注射毒品者服务项目的纳洛酮分发。

方法

两个注射毒品者服务项目参与了为期 6 个月的 SAIA-Naloxone 试点,其中包括(1)分析项目数据以确定纳洛酮输送级联中的差距,(2)流程映射以确定损耗的原因,并集思广益改进方案,(3)进行持续质量改进,以测试和评估修改是否改善级联。我们使用启动 SAIA-Naloxone 前后 52 周和 26 周的数据进行了中断时间序列分析。使用泊松回归评估 SAIA-Naloxone 与每周接受纳洛酮的参与者人数和分发的纳洛酮剂量数之间的关联。

结果

在研究过程中,共分发了 11107 剂纳洛酮给 6071 名参与者。通过 SAIA-Naloxone,注射毒品者服务项目优先测试方案修改,以改善数据收集程序,主动筛查和识别纳洛酮初治参与者,简化纳洛酮补充系统,并允许二次纳洛酮分发。SAIA-Naloxone 与每周接受纳洛酮的人数平均增加(37%更多的 SPP 参与者;95%CI,12%至 67%)和每周分发的纳洛酮剂量平均增加(105%更多的纳洛酮剂量;95%CI,79%至 136%)呈统计学显著相关,超过了基础的 SAIA-Naloxone 水平。这些初始增加是通过持续的积极变化而延长的(与 SAIA-Naloxone 前期每周趋势相比,每周有 1.6%更多的 SSP 参与者接受纳洛酮,0.3%更多的纳洛酮剂量被分发)。

结论

SAIA-Naloxone 具有改善注射毒品者服务项目纳洛酮分发的巨大潜力。这些发现令人鼓舞,因为美国阿片类药物过量危机正在恶化,并支持在注射毒品者服务项目中进行大规模随机试验测试 SAIA-Naloxone。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbc/10035142/eb770eaf835c/12913_2023_9289_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验