Laboratoire de Chimie, ENS Lyon, CNRS, UCBL - UMR 5182, 46, allée d'Italie, 69364, Lyon Cedex 07, France.
Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON-UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne Cedex, France.
Small. 2023 Jun;19(26):e2208055. doi: 10.1002/smll.202208055. Epub 2023 Mar 22.
Synthesis of high quality colloidal Cerium(III) doped yttrium aluminum garnet (Y Al O :Ce , "YAG:Ce") nanoparticles (NPs) meeting simultaneously both ultra-small size and high photoluminescence (PL) performance is challenging, as generally a particle size/PL trade-off has been observed for this type of nanomaterials. The glycothermal route is capable to yield ultra-fine crystalline colloidal YAG:Ce nanoparticles with a particle size as small as 10 nm but with quantum yield (QY) no more than 20%. In this paper, the first ultra-small YPO -YAG:Ce nanocomposite phosphor particles having an exceptional QY-to-size performance with an QY up to 53% while maintaining the particle size ≈10 nm is reported. The NPs are produced via a phosphoric acid- and extra yttrium acetate-assisted glycothermal synthesis route. Localization of phosphate and extra yttrium entities with respect to cerium centers in the YAG host has been determined by fine structural analysis techniques such as X-ray diffration (XRD), solid state nuclear magnetic resonance (NMR), and high resolution scanning transmission electron microscopy (HR-STEM), and shows distinct YPO and YAG phases. Finally, a correlation between the additive-induced physico-chemical environment change around cerium centers and the increasing PL performance has been suggested based on electron paramagnetic resonance (EPR), X-ray photoelectron spectrometry (XPS) data, and crystallographic simulation studies.
合成高质量的胶体铈(III)掺杂钇铝石榴石(Y Al O :Ce ,"YAG:Ce")纳米粒子(NPs),同时满足超小尺寸和高光致发光(PL)性能是具有挑战性的,因为通常对于这种类型的纳米材料观察到粒径/PL 权衡。甘醇热法能够产生超精细结晶的胶体 YAG:Ce 纳米粒子,粒径小至 10nm,但量子产率(QY)不超过 20%。本文首次报道了具有优异的QY-尺寸性能的超小 YPO -YAG:Ce 纳米复合荧光粉颗粒,其QY 高达 53%,同时保持粒径≈10nm。通过磷酸和额外的乙酸钇辅助甘醇热合成路线制备了 NPs。通过 X 射线衍射(XRD)、固态核磁共振(NMR)和高分辨率扫描透射电子显微镜(HR-STEM)等精细结构分析技术确定了磷酸盐和额外的钇实体相对于 YAG 基质中铈中心的定位,并显示出明显的 YPO 和 YAG 相。最后,根据电子顺磁共振(EPR)、X 射线光电子能谱(XPS)数据和晶体模拟研究,提出了铈中心周围添加剂诱导的物理化学环境变化与 PL 性能提高之间的相关性。