Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
J Physiol. 2023 May;601(10):1711-1718. doi: 10.1113/JP283719. Epub 2023 Mar 29.
MicroRNAs are non-coding RNAs, approximately 22 nt in length, which serve to negatively regulate gene expression through binding to complementary sequences in the 3' untranslated region (3'UTR) of target mRNA. The microRNA-target interaction does not require perfect complementarity, meaning that an individual microRNA often has a pool of hundreds of gene targets. Equally, one 3'UTR can contain target sites for many different microRNAs. This gives rise to a complex web of molecular interactions. An emerging concept is that microRNAs have a role as 'master' regulators of certain cellular properties, simultaneously mediating the subtle repression of multiple related genes within a pathway or system, thereby achieving a common phenotypic output. One such example is regulation of brain excitability. There are numerous examples of microRNAs which can target ion channels, ion transporters and genes associated with synaptic transmission. Often, the expression of the microRNA itself is regulated in an activity-dependent manner, thereby forming homeostatic loops. Limitations in our understanding arise from the sheer complexity of microRNA-target interactions, which are difficult to capture experimentally and computationally. Further, many microRNA studies rely on animal model systems, but many microRNAs (and mRNA targets) have sequences which are either not conserved or are entirely unique in the human brain. This leaves many exciting and challenging opportunities to further progress the field in an attempt to fully understand the roles of microRNAs in brain function.
MicroRNAs 是一种非编码 RNA,长度约为 22 个核苷酸,通过与靶 mRNA 3'非翻译区(3'UTR)中的互补序列结合,负调控基因表达。microRNA 与靶标的相互作用不需要完全互补,这意味着单个 microRNA 通常有数百个基因靶标。同样,一个 3'UTR 可以包含许多不同 microRNA 的靶标位点。这就产生了一个复杂的分子相互作用网络。一个新兴的概念是,microRNAs 作为某些细胞特性的“主”调节剂发挥作用,同时在途径或系统内对多个相关基因进行细微抑制,从而实现共同的表型输出。一个这样的例子是对大脑兴奋性的调节。有许多 microRNAs 可以靶向离子通道、离子转运体和与突触传递相关的基因。通常,microRNA 本身的表达以活性依赖的方式受到调节,从而形成了自身的稳态循环。我们对 microRNA 与靶标的相互作用的理解存在局限性,因为这种相互作用非常复杂,难以通过实验和计算来捕捉。此外,许多 microRNA 研究依赖于动物模型系统,但许多 microRNAs(和 mRNA 靶标)的序列在人类大脑中既没有保守,也没有完全独特。这为进一步推进该领域的研究留下了许多令人兴奋和具有挑战性的机会,以期全面了解 microRNAs 在大脑功能中的作用。