Centre for Systems Medicine & Dept. of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
Sci Rep. 2024 Jul 3;14(1):15313. doi: 10.1038/s41598-024-66117-7.
Epileptogenesis is the process by which a normal brain becomes hyperexcitable and capable of generating spontaneous recurrent seizures. The extensive dysregulation of gene expression associated with epileptogenesis is shaped, in part, by microRNAs (miRNAs) - short, non-coding RNAs that negatively regulate protein levels. Functional miRNA-mediated regulation can, however, be difficult to elucidate due to the complexity of miRNA-mRNA interactions. Here, we integrated miRNA and mRNA expression profiles sampled over multiple time-points during and after epileptogenesis in rats, and applied bi-clustering and Bayesian modelling to construct temporal miRNA-mRNA-mRNA interaction networks. Network analysis and enrichment of network inference with sequence- and human disease-specific information identified key regulatory miRNAs with the strongest influence on the mRNA landscape, and miRNA-mRNA interactions closely associated with epileptogenesis and subsequent epilepsy. Our findings underscore the complexity of miRNA-mRNA regulation, can be used to prioritise miRNA targets in specific systems, and offer insights into key regulatory processes in epileptogenesis with therapeutic potential for further investigation.
癫痫发生是指正常大脑变得过度兴奋并能够产生自发复发性癫痫发作的过程。与癫痫发生相关的广泛基因表达失调部分是由 microRNAs(miRNAs)形成的——短的非编码 RNA,可负调控蛋白质水平。然而,由于 miRNA-mRNA 相互作用的复杂性,功能性 miRNA 介导的调节可能难以阐明。在这里,我们整合了在大鼠癫痫发生期间和之后的多个时间点采样的 miRNA 和 mRNA 表达谱,并应用双聚类和贝叶斯建模来构建时间 miRNA-mRNA-mRNA 相互作用网络。网络分析和网络推断与序列和人类疾病特异性信息的富集确定了对 mRNA 景观具有最强影响的关键调节 miRNA,以及与癫痫发生和随后的癫痫密切相关的 miRNA-mRNA 相互作用。我们的研究结果强调了 miRNA-mRNA 调节的复杂性,可用于在特定系统中优先考虑 miRNA 靶标,并为癫痫发生中的关键调节过程提供了见解,具有进一步研究的治疗潜力。