Suppr超能文献

使用多曝光激光散斑对比成像和机器学习进行速度分辨灌注成像。

Speed-resolved perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning.

机构信息

Linköping University, Department of Biomedical Engineering, Linköping, Sweden.

Perimed AB, Stockholm, Sweden.

出版信息

J Biomed Opt. 2023 Mar;28(3):036007. doi: 10.1117/1.JBO.28.3.036007. Epub 2023 Mar 20.

Abstract

SIGNIFICANCE

Laser speckle contrast imaging (LSCI) gives a relative measure of microcirculatory perfusion. However, due to the limited information in single-exposure LSCI, models are inaccurate for skin tissue due to complex effects from e.g. static and dynamic scatterers, multiple Doppler shifts, and the speed-distribution of blood. It has been demonstrated how to account for these effects in laser Doppler flowmetry (LDF) using inverse Monte Carlo (MC) algorithms. This allows for a speed-resolved perfusion measure in absolute units %RBC × mm/s, improving the physiological interpretation of the data. Until now, this has been limited to a single-point LDF technique but recent advances in multi-exposure LSCI (MELSCI) enable the analysis in an imaging modality.

AIM

To present a method for speed-resolved perfusion imaging in absolute units %RBC × mm/s, computed from multi-exposure speckle contrast images.

APPROACH

An artificial neural network (ANN) was trained on a large simulated dataset of multi-exposure contrast values and corresponding speed-resolved perfusion. The dataset was generated using MC simulations of photon transport in randomized skin models covering a wide range of physiologically relevant geometrical and optical tissue properties. The ANN was evaluated on in vivo data sets captured during an occlusion provocation.

RESULTS

Speed-resolved perfusion was estimated in the three speed intervals 0 to , 1 to , and , with relative errors 9.8%, 12%, and 19%, respectively. The perfusion had a linear response to changes in both blood tissue fraction and blood flow speed and was less affected by tissue properties compared with single-exposure LSCI. The image quality was subjectively higher compared with LSCI, revealing previously unseen macro- and microvascular structures.

CONCLUSIONS

The ANN, trained on modeled data, calculates speed-resolved perfusion in absolute units from multi-exposure speckle contrast. This method facilitates the physiological interpretation of measurements using MELSCI and may increase the clinical impact of the technique.

摘要

意义

激光散斑对比成像(LSCI)提供了微循环灌注的相对测量。然而,由于单次曝光 LSCI 提供的信息有限,由于静态和动态散射体、多个多普勒频移以及血液速度分布等复杂影响,模型对于皮肤组织并不准确。已经证明如何使用逆蒙特卡罗(MC)算法在激光多普勒流量测量(LDF)中考虑这些影响。这允许以绝对单位 %RBC × mm/s 进行速度分辨的灌注测量,从而改善数据的生理解释。到目前为止,这仅限于单点 LDF 技术,但多曝光 LSCI(MELSCI)的最新进展使这种技术能够在成像模式中进行分析。

目的

提出一种从多曝光散斑对比图像计算绝对单位 %RBC × mm/s 的速度分辨灌注成像方法。

方法

在一个大的多曝光对比度值和相应速度分辨灌注的模拟数据集上对人工神经网络(ANN)进行训练。该数据集是使用光子在随机皮肤模型中的传输的 MC 模拟生成的,涵盖了广泛的生理相关几何和光学组织特性。在进行闭塞诱发时捕获的体内数据集上对 ANN 进行了评估。

结果

在 0 到 、1 到 和 三个速度间隔内估计了速度分辨灌注,相对误差分别为 9.8%、12%和 19%。灌注对血液组织分数和血流速度的变化呈线性响应,与单次曝光 LSCI 相比,受组织特性的影响较小。与 LSCI 相比,图像质量主观上更高,揭示了以前看不见的宏观和微观血管结构。

结论

基于模型数据训练的 ANN 以绝对单位从多曝光散斑对比计算速度分辨灌注。该方法促进了使用 MELSCI 的测量的生理解释,并可能增加该技术的临床影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/282b/10027009/138464f21953/JBO-028-036007-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验