Suppr超能文献

利用特征级MixSiam提升少样本共聚焦内镜图像识别能力。

Boosting few-shot confocal endomicroscopy image recognition with feature-level MixSiam.

作者信息

Zhou Jingjun, Dong Xiangjiang, Liu Qian

机构信息

School of Biomedical Engineering, Hainan University, 570228 Haikou, China.

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074 Wuhan, China.

出版信息

Biomed Opt Express. 2023 Feb 7;14(3):1054-1070. doi: 10.1364/BOE.478832. eCollection 2023 Mar 1.

Abstract

As an emerging early diagnostic technology for gastrointestinal diseases, confocal laser endomicroscopy lacks large-scale perfect annotated data, leading to a major challenge in learning discriminative semantic features. So, how should we learn representations without labels or a few labels? In this paper, we proposed a feature-level MixSiam method based on the traditional Siamese network that learns the discriminative features of probe-based confocal laser endomicroscopy (pCLE) images for gastrointestinal (GI) tumor classification. The proposed method is divided into two stages: self-supervised learning (SSL) and few-shot learning (FS). First, in the self-supervised learning stage, the novel feature-level-based feature mixing approach introduced more task-relevant information via regularization, facilitating the traditional Siamese structure can adapt to the large intra-class variance of the pCLE dataset. Then, in the few-shot learning stage, we adopted the pre-trained model obtained through self-supervised learning as the base learner in the few-shot learning pipeline, enabling the feature extractor to learn richer and more transferable visual representations for rapid generalization to other pCLE classification tasks when labeled data are limited. On two disjoint pCLE gastrointestinal image datasets, the proposed method is evaluated. With the linear evaluation protocol, feature-level MixSiam outperforms the baseline by 6% (Top-1) and the supervised model by 2% (Top1), which demonstrates the effectiveness of the proposed feature-level-based feature mixing method. Furthermore, the proposed method outperforms the previous baseline method for the few-shot classification task, which can help improve the classification of pCLE images lacking large-scale annotated data for different stages of tumor development.

摘要

作为一种新兴的胃肠道疾病早期诊断技术,共聚焦激光显微内镜缺乏大规模的完美标注数据,这给学习判别性语义特征带来了重大挑战。那么,在没有标签或只有少量标签的情况下,我们应该如何学习表示呢?在本文中,我们基于传统的暹罗网络提出了一种特征级MixSiam方法,用于学习基于探针的共聚焦激光显微内镜(pCLE)图像的判别特征,以进行胃肠道(GI)肿瘤分类。所提出的方法分为两个阶段:自监督学习(SSL)和少样本学习(FS)。首先,在自监督学习阶段,基于特征级的新颖特征混合方法通过正则化引入了更多与任务相关的信息,使得传统的暹罗结构能够适应pCLE数据集较大的类内方差。然后,在少样本学习阶段,我们采用通过自监督学习获得的预训练模型作为少样本学习管道中的基础学习器,使特征提取器能够学习更丰富、更具可迁移性的视觉表示,以便在标注数据有限时能够快速推广到其他pCLE分类任务。在两个不相交的pCLE胃肠道图像数据集上对所提出的方法进行了评估。采用线性评估协议,特征级MixSiam在Top-1指标上比基线方法高出6%,比监督模型高出2%,这证明了所提出的基于特征级的特征混合方法的有效性。此外,所提出的方法在少样本分类任务上优于先前的基线方法,这有助于改善缺乏不同肿瘤发展阶段大规模标注数据的pCLE图像的分类。

相似文献

2
3
Deep Graph-Based Multimodal Feature Embedding for Endomicroscopy Image Retrieval.用于内镜显微镜图像检索的基于深度图的多模态特征嵌入
IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):481-492. doi: 10.1109/TNNLS.2020.2980129. Epub 2021 Feb 4.
5
Transfer Recurrent Feature Learning for Endomicroscopy Image Recognition.转移复现特征学习在内窥图像识别中的应用
IEEE Trans Med Imaging. 2019 Mar;38(3):791-801. doi: 10.1109/TMI.2018.2872473. Epub 2018 Sep 27.
7
Unsupervised Few-Shot Feature Learning via Self-Supervised Training.通过自监督训练实现无监督少样本特征学习
Front Comput Neurosci. 2020 Oct 14;14:83. doi: 10.3389/fncom.2020.00083. eCollection 2020.
10
Toward Robust Histology-Prior Embedding for Endomicroscopy Image Classification.面向内窥镜图像分类的稳健组织学先验嵌入。
IEEE Trans Med Imaging. 2022 Nov;41(11):3242-3252. doi: 10.1109/TMI.2022.3180340. Epub 2022 Oct 27.

本文引用的文献

3
Models Genesis.模型起源。
Med Image Anal. 2021 Jan;67:101840. doi: 10.1016/j.media.2020.101840. Epub 2020 Oct 13.
5
Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey.基于深度神经网络的自监督视觉特征学习:综述
IEEE Trans Pattern Anal Mach Intell. 2021 Nov;43(11):4037-4058. doi: 10.1109/TPAMI.2020.2992393. Epub 2021 Oct 1.
6
Deep Graph-Based Multimodal Feature Embedding for Endomicroscopy Image Retrieval.用于内镜显微镜图像检索的基于深度图的多模态特征嵌入
IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):481-492. doi: 10.1109/TNNLS.2020.2980129. Epub 2021 Feb 4.
9
Transfer Recurrent Feature Learning for Endomicroscopy Image Recognition.转移复现特征学习在内窥图像识别中的应用
IEEE Trans Med Imaging. 2019 Mar;38(3):791-801. doi: 10.1109/TMI.2018.2872473. Epub 2018 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验