Zhang Wanrong, Mei Yajun
Harvard University.
Georgia Institute of Technology.
Technometrics. 2023;65(1):33-43. doi: 10.1080/00401706.2022.2054861. Epub 2022 Apr 22.
In many real-world problems of real-time monitoring high-dimensional streaming data, one wants to detect an undesired event or change quickly once it occurs, but under the sampling control constraint in the sense that one might be able to only observe or use selected components data for decision-making per time step in the resource-constrained environments. In this paper, we propose to incorporate multi-armed bandit approaches into sequential change-point detection to develop an efficient bandit change-point detection algorithm based on the limiting Bayesian approach to incorporate a prior knowledge of potential changes. Our proposed algorithm, termed Thompson-Sampling-Shiryaev-Roberts-Pollak (TSSRP), consists of two policies per time step: the adaptive sampling policy applies the Thompson Sampling algorithm to balance between exploration for acquiring long-term knowledge and exploitation for immediate reward gain, and the statistical decision policy fuses the local Shiryaev-Roberts-Pollak statistics to determine whether to raise a global alarm by sum shrinkage techniques. Extensive numerical simulations and case studies demonstrate the statistical and computational efficiency of our proposed TSSRP algorithm.
在许多实时监测高维流数据的实际问题中,一旦不期望的事件或变化发生,人们希望能迅速检测到,但要在采样控制约束下,即在资源受限环境中,每次时间步长可能只能观察或使用选定的分量数据进行决策。在本文中,我们建议将多臂赌博机方法纳入顺序变化点检测,以基于极限贝叶斯方法开发一种有效的赌博机变化点检测算法,纳入潜在变化的先验知识。我们提出的算法称为汤普森采样- Shiryaev - Roberts - Pollak(TSSRP),每个时间步长由两种策略组成:自适应采样策略应用汤普森采样算法,在获取长期知识的探索和获取即时奖励的利用之间进行平衡;统计决策策略融合局部的Shiryaev - Roberts - Pollak统计量,通过求和收缩技术确定是否发出全局警报。大量的数值模拟和案例研究证明了我们提出的TSSRP算法的统计和计算效率。