Suppr超能文献

基于修正经验似然的非参数 Shiryaev-Roberts 变点检测程序

Nonparametric Shiryaev-Roberts change-point detection procedures based on modified empirical likelihood.

作者信息

Wang Peiyao, Ning Wei

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.

Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH, USA.

出版信息

J Appl Stat. 2024 Jan 23;51(13):2558-2591. doi: 10.1080/02664763.2024.2307532. eCollection 2024.

Abstract

Sequential change-point analysis, which identifies a change of probability distribution in an infinite sequence of random observations, has important applications in many fields. A good method should detect a change point as soon as possible, and keep a low amount of false alarms. As one of the most popular methods, Shiryaev-Roberts (SR) procedure holds many optimalities. However, its implementation requires the pre-change and post-change distributions to be known, which is not achievable in practice. In this paper, we construct a nonparametric version of the SR procedure by embedding different versions of empirical likelihood, assuming two training samples, before and after change, are available for parameter estimations. Simulations are conducted to compare the performance of the proposed method with existing methods. The results show that when the underlying distribution is unknown, and training sample sizes are small, the proposed modified procedure shows advantage by giving a smaller delay of detection.

摘要

序贯变点分析用于识别无限随机观测序列中概率分布的变化,在许多领域都有重要应用。一个好的方法应该尽快检测到变点,并保持较低的误报率。作为最流行的方法之一, Shiryaev-Roberts(SR)程序具有许多最优性。然而,它的实施需要知道变化前和变化后的分布,这在实际中是无法实现的。在本文中,我们通过嵌入不同版本的经验似然来构建SR程序的非参数版本,假设可以获得变化前后的两个训练样本用于参数估计。进行了模拟以比较所提出的方法与现有方法的性能。结果表明,当基础分布未知且训练样本量较小时,所提出的改进程序通过给出较小的检测延迟而显示出优势。

相似文献

2
Adaptive Partially Observed Sequential Change Detection and Isolation.自适应部分观测序列变化检测与隔离
Technometrics. 2022;64(4):502-512. doi: 10.1080/00401706.2022.2124307. Epub 2022 Nov 8.
5
Sequential detection of learning in cognitive diagnosis.认知诊断中学习的顺序检测
Br J Math Stat Psychol. 2016 May;69(2):139-58. doi: 10.1111/bmsp.12065. Epub 2016 Mar 2.
6
Compromised item detection: A Bayesian change-point perspective.有瑕疵项目检测:贝叶斯变点视角。
Br J Math Stat Psychol. 2023 Feb;76(1):131-153. doi: 10.1111/bmsp.12286. Epub 2022 Sep 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验