Suppr超能文献

生物标志物可预测股骨颈骨折患者的住院死亡率。

Biomarkers as predictors of inpatient mortality in fractured neck of femur patients.

机构信息

Department of Trauma and Orthopaedic Surgery, Epsom and St Helier Hospital NHS Trust, UK.

Department of Trauma and Orthopaedic Surgery, Epsom and St Helier Hospital NHS Trust, UK.

出版信息

Arch Gerontol Geriatr. 2023 Aug;111:105004. doi: 10.1016/j.archger.2023.105004. Epub 2023 Mar 21.

Abstract

INTRODUCTION

Hip fractures are common and it is estimated to cost the National Health Service (NHS) around £2 billion/year. The majority of these patients are elderly and they require careful perioperative management as morbidity and mortality are high. This study aims to look at routinely gathered biomarker data and baseline demographics to evaluate if they may be used to predict inpatient mortality.

PATIENTS AND METHODS

The study included 2158 patients from a single Centre over a 5-year period.

INCLUSION CRITERIA

age>60, confirmed fractured neck of femur on radiological imaging.

EXCLUSION CRITERIA

pathological fractures, patients treated non-operatively, missing data. Univariate followed by multivariate analysis was conducted to identify the independent predictors of inpatient mortality.

RESULTS

The variables found to be independent predictors of inpatient mortality were: age > 85, sex (male), albumin < 35, lymphocytes < 1, American Society of Anesthesiologist (ASA) grade > 3. For the final derived multivariate logistic regression model, a receiver operator characteristic (ROC) curve was constructed to assess the ability of the included variables to predict inpatient mortality. The area under the curve was 0.794 which together with sensitivity of 63.2% and a specificity of 79.1% at a cut value of 0.1.

CONCLUSION

This paper supports research previously conducted in this field, showing the prognostic value of both biomarker (albumin and lymphocytes), and non-biomarker data (ASA grade, age and gender) in predicting mortality in patients who have sustained a hip fracture.

摘要

简介

髋部骨折很常见,据估计每年给国民保健制度(NHS)带来约 20 亿英镑的费用。这些患者大多数是老年人,由于发病率和死亡率高,他们需要精心的围手术期管理。本研究旨在观察常规收集的生物标志物数据和基线人口统计学数据,以评估它们是否可用于预测住院患者的死亡率。

患者和方法

这项研究包括来自一个中心的 2158 名患者,时间跨度为 5 年。

纳入标准

年龄>60 岁,影像学证实股骨颈骨折。

排除标准

病理性骨折、非手术治疗患者、数据缺失。采用单变量和多变量分析来确定住院患者死亡的独立预测因素。

结果

发现年龄>85 岁、性别(男性)、白蛋白<35g/L、淋巴细胞<1 个/μL、美国麻醉医师协会(ASA)分级>3 级是住院患者死亡的独立预测因素。对于最终的多变量逻辑回归模型,构建了受试者工作特征(ROC)曲线,以评估纳入变量预测住院患者死亡的能力。曲线下面积为 0.794,在截断值为 0.1 时,敏感性为 63.2%,特异性为 79.1%。

结论

本文支持了该领域先前的研究,表明生物标志物(白蛋白和淋巴细胞)和非生物标志物数据(ASA 分级、年龄和性别)在预测髋部骨折患者死亡率方面具有预测价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验