Suppr超能文献

AATSN:使用轻量级融合注意力机制的用于 PET-CT 容积和图像的解剖感知肿瘤分割网络。

AATSN: Anatomy Aware Tumor Segmentation Network for PET-CT volumes and images using a lightweight fusion-attention mechanism.

机构信息

School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.

School of Information Science and Technology, University of Science and Technology of China, Hefei, 230000, Anhui, PR China.

出版信息

Comput Biol Med. 2023 May;157:106748. doi: 10.1016/j.compbiomed.2023.106748. Epub 2023 Mar 11.

Abstract

Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) provides metabolic information, while Computed Tomography (CT) provides the anatomical context of the tumors. Combined PET-CT segmentation helps in computer-assisted tumor diagnosis, staging, and treatment planning. Current state-of-the-art models mainly rely on early or late fusion techniques. These methods, however, rarely learn PET-CT complementary features and cannot efficiently co-relate anatomical and metabolic features. These drawbacks can be removed by intermediate fusion; however, it produces inaccurate segmentations in the case of heterogeneous textures in the modalities. Furthermore, it requires massive computation. In this work, we propose AATSN (Anatomy Aware Tumor Segmentation Network), which extracts anatomical CT features, and then intermediately fuses with PET features through a fusion-attention mechanism. Our anatomy-aware fusion-attention mechanism fuses the selective useful CT and PET features instead of fusing the full features set. Thus this not only improves the network performance but also requires lesser resources. Furthermore, our model is scalable to 2D images and 3D volumes. The proposed model is rigorously trained, tested, evaluated, and compared to the state-of-the-art through several ablation studies on the largest available datasets. We have achieved a 0.8104 dice score and 2.11 median HD95 score in a 3D setup, while 0.6756 dice score in a 2D setup. We demonstrate that AATSN achieves a significant performance gain while being lightweight at the same time compared to the state-of-the-art methods. The implications of AATSN include improved tumor delineation for diagnosis, analysis, and radiotherapy treatment.

摘要

氟代脱氧葡萄糖正电子发射断层扫描(FDG-PET)提供代谢信息,而计算机断层扫描(CT)提供肿瘤的解剖背景。结合 PET-CT 分割有助于计算机辅助肿瘤诊断、分期和治疗计划。当前的最先进模型主要依赖于早期或晚期融合技术。然而,这些方法很少学习 PET-CT 互补特征,也不能有效地将解剖和代谢特征相关联。通过中间融合可以消除这些缺点;然而,在模态中存在异质纹理的情况下,它会产生不准确的分割。此外,它需要大量的计算。在这项工作中,我们提出了 AATSN(解剖感知肿瘤分割网络),它提取解剖 CT 特征,然后通过融合注意力机制与 PET 特征进行中间融合。我们的解剖感知融合注意力机制融合了选择性有用的 CT 和 PET 特征,而不是融合完整的特征集。这样不仅提高了网络性能,而且还减少了资源需求。此外,我们的模型可扩展到 2D 图像和 3D 体素。通过在最大可用数据集上进行的几项消融研究,对所提出的模型进行了严格的训练、测试、评估和与最先进技术的比较。在 3D 设置中,我们获得了 0.8104 的骰子分数和 2.11 的中位数 HD95 分数,而在 2D 设置中,我们获得了 0.6756 的骰子分数。与最先进的方法相比,我们证明 AATSN 在保持轻量化的同时实现了显著的性能提升。AATSN 的意义包括改善肿瘤描绘以进行诊断、分析和放射治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验