Suppr超能文献

通过结构和语义相似性引导的自对比学习进行嵌套关系抽取。

Nested relation extraction via self-contrastive learning guided by structure and semantic similarity.

机构信息

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China; Department of Computer Science and Technology, Nanjing University, Nanjing, 210023, China.

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China; Department of Computer Science and Technology, Nanjing University, Nanjing, 210023, China.

出版信息

Neural Netw. 2023 May;162:393-411. doi: 10.1016/j.neunet.2023.03.001. Epub 2023 Mar 4.

Abstract

The conventional Relation Extraction (RE) task involves identifying whether relations exist between two entities in a given sentence and determining their relation types. However, the complexity of practical application scenarios and the flexibility of natural language demand the ability to extract nested relations, i.e., the recognized relation triples may be components of the higher-level relations. Previous studies have highlighted several challenges that affect the nested RE task, including the lack of abundant labeled data, inappropriate neural networks, and underutilization of the nested relation structures. To address these issues, we formalize the nested RE task and propose a hierarchical neural network to iteratively identify the nested relations between entities and relation triples in a layer by layer manner. Moreover, a novel self-contrastive learning optimization strategy is presented to adapt our method to low-data settings by fully exploiting the constraints due to the nested structure and semantic similarity between paired input sentences. Our method outperformed the state-of-the-art baseline methods in extensive experiments, and ablation experiments verified the effectiveness of the proposed self-contrastive learning optimization strategy.

摘要

传统的关系抽取(RE)任务涉及识别给定句子中两个实体之间是否存在关系,并确定它们的关系类型。然而,实际应用场景的复杂性和自然语言的灵活性要求能够提取嵌套关系,即识别出的关系三元组可能是更高层次关系的组成部分。先前的研究强调了影响嵌套 RE 任务的几个挑战,包括缺乏丰富的标记数据、不合适的神经网络以及对嵌套关系结构的利用不足。为了解决这些问题,我们形式化了嵌套 RE 任务,并提出了一种分层神经网络,以逐步识别实体之间以及关系三元组之间的嵌套关系。此外,还提出了一种新颖的自对比学习优化策略,通过充分利用嵌套结构和配对输入句子之间的语义相似性带来的约束,使我们的方法能够适应数据量较少的情况。在广泛的实验中,我们的方法优于最先进的基线方法,消融实验验证了所提出的自对比学习优化策略的有效性。

相似文献

2
HRCL: Hierarchical Relation Contrastive Learning for Low-Resource Relation Extraction.HRCL:用于低资源关系抽取的层次关系对比学习
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):7263-7276. doi: 10.1109/TNNLS.2024.3386611. Epub 2025 Apr 4.
3
Improving few-shot relation extraction through semantics-guided learning.通过语义引导学习提高小样本关系抽取。
Neural Netw. 2024 Jan;169:453-461. doi: 10.1016/j.neunet.2023.10.053. Epub 2023 Nov 3.
9
Semantics-Guided Contrastive Network for Zero-Shot Object Detection.用于零样本目标检测的语义引导对比网络
IEEE Trans Pattern Anal Mach Intell. 2024 Mar;46(3):1530-1544. doi: 10.1109/TPAMI.2021.3140070. Epub 2024 Feb 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验