Department of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar-144011, Punjab, India.
Department of Electronics and Communication Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh-160014, India.
Anal Chem. 2023 Apr 4;95(13):5796-5806. doi: 10.1021/acs.analchem.3c00258. Epub 2023 Mar 23.
In this study, a novel rhodamine-based optically and electrochemically active chemosensor, integrated with a p-DMAC moiety, demonstrated extremely selective identification of Au ions relative to other metal species, including (Li, Na, K, Ba, Ca, Mg, Co, Mn, Zn, Pb, Ni, Fe, Hg, Fe, Cd, Pd, Al, Cr, Cu, and nitrate salt of Ag). These compounds demonstrated a novel and outstanding aggregation-induced emission enhancement (AIEE) behavior by aggregating in DMF/HO medium. Furthermore, the degree of quenching was varying linearly with a Au concentration from 0 to 40 nM, with a lower detection limit by RH-DMAC nanoaggregates of 118.79 picomolar (40.35 ppm). The Stern-Volmer plots, Job's plot, Benesi-Hildebrand plot, H NMR titrations, ESI-mass, and FTIR all revealed significant interactions between the sensor and Au. Moreover, the proposed electrochemical sensor afforded a linear correlation before the peak current and concentration of Au in the range of 0-40 nM, with a detection limit of 483.73 pM or 164.36 ppt (by cyclic voltammetry method) and 298.0 pM or 101.24 ppt (by the Differential Pulse Voltammetry method). Furthermore, the proposed sensing assay was used to measure Au ion in spiked water samples (tap, drinking, waste, and river water), achieving acceptable accuracy and precision with high recovery rates. Furthermore, RH-DMAC-coated fluorescence paper test strips were designed for on-site Au detection. Apart from this, the use of smartphone-based RGB (Red Green Blue) color analysis shortened the operating process, accelerated the detection technique, and provided a novel methodology for the instantaneous, real-time examination of Au in real water samples.
在这项研究中,一种新型的基于罗丹明的光电活性化学传感器,与 p-DMAC 部分结合,展示了对 Au 离子的极高选择性识别,相对于其他金属物种,包括(Li、Na、K、Ba、Ca、Mg、Co、Mn、Zn、Pb、Ni、Fe、Hg、Fe、Cd、Pd、Al、Cr、Cu 和 Ag 的硝酸盐盐)。这些化合物在 DMF/HO 介质中表现出新颖的和出色的聚集诱导发射增强(AIEE)行为。此外,通过 RH-DMAC 纳米聚集体,猝灭程度与 Au 浓度从 0 到 40 nM 呈线性变化,检测下限为 118.79 皮摩尔(40.35 ppm)。Stern-Volmer 图、Job 图、Benesi-Hildebrand 图、1H NMR 滴定、ESI 质谱和 FTIR 均表明传感器与 Au 之间存在显著的相互作用。此外,所提出的电化学传感器在 Au 的浓度范围为 0-40 nM 时提供了与峰电流的线性相关性,检测下限为 483.73 pM 或 164.36 ppt(通过循环伏安法)和 298.0 pM 或 101.24 ppt(通过差分脉冲伏安法)。此外,所提出的传感测定法用于测量加标水样(自来水、饮用水、废水和河水)中的 Au 离子,具有可接受的准确度和精密度以及高回收率。此外,设计了 RH-DMAC 涂层荧光纸条用于现场 Au 检测。除此之外,基于智能手机的 RGB(红、绿、蓝)颜色分析缩短了操作过程,加速了检测技术,并为即时、实时检测实际水样中的 Au 提供了一种新方法。