Suppr超能文献

用于心血管风险评估的左心房应变的无监督时间序列聚类

Unsupervised Time-Series Clustering of Left Atrial Strain for Cardiovascular Risk Assessment.

作者信息

Ntalianis Evangelos, Sabovčik František, Cauwenberghs Nicholas, Kouznetsov Dmitry, Daels Yne, Claus Piet, Kuznetsova Tatiana

机构信息

Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.

Interuniversity Micro-Electronic Centre, Leuven, Belgium.

出版信息

J Am Soc Echocardiogr. 2023 Jul;36(7):778-787. doi: 10.1016/j.echo.2023.03.007. Epub 2023 Mar 22.

Abstract

BACKGROUND

Early identification of individuals at high risk for developing cardiovascular (CV) events is of paramount importance for efficient risk management. Here, the authors investigated whether using unsupervised machine learning methods on time-series data of left atrial (LA) strain could distinguish clinically meaningful phenogroups associated with the risk for developing adverse events.

METHODS

In 929 community-dwelling individuals (mean age, 51.6 years; 52.9% women), clinical and echocardiographic data were acquired, including LA strain traces, at baseline, and cardiac events were collected on average 6.3 years later. Two unsupervised learning techniques were used: (1) an ensemble of a deep convolutional neural network autoencoder with k-medoids and (2) a self-organizing map to cluster spatiotemporal patterns within LA strain curves. Clinical characteristics and cardiac outcome were used to evaluate the validity of the k clusters using the original cohort, while an external population cohort (n = 378) was used to validate the trained models.

RESULTS

In both approaches, the optimal number of clusters was five. The first three clusters had differences in sex distribution and heart rate but had a similar low CV risk profile. On the other hand, cluster 5 had the worst CV profile and a higher prevalence of left ventricular remodeling and diastolic dysfunction compared with the other clusters. The respective indexes of cluster 4 were between those of clusters 1 to 3 and 5. After adjustment for traditional risk factors, cluster 5 had the highest risk for cardiac events compared with clusters 1, 2, and 3 (hazard ratio, 1.36; 95% CI, 1.09-1.70; P = .0063). Similar LA strain patterns were obtained when the models were applied to the external validation cohort, and clinical characteristics revealed similar CV risk profiles across all clusters.

CONCLUSION

Unsupervised machine learning algorithms used in time-series LA strain curves identified clinically meaningful clusters of LA deformation and provide incremental prognostic information over traditional risk factors.

摘要

背景

早期识别发生心血管(CV)事件的高危个体对于有效的风险管理至关重要。在此,作者研究了对左心房(LA)应变的时间序列数据使用无监督机器学习方法是否能够区分与发生不良事件风险相关的具有临床意义的表型组。

方法

在929名社区居住个体(平均年龄51.6岁;52.9%为女性)中,在基线时获取了临床和超声心动图数据,包括LA应变轨迹,并在平均6.3年后收集心脏事件。使用了两种无监督学习技术:(1)深度卷积神经网络自动编码器与k-中心点的集成,以及(2)自组织映射以对LA应变曲线内的时空模式进行聚类。使用原始队列的临床特征和心脏结局来评估k个聚类的有效性,同时使用外部人群队列(n = 378)来验证训练的模型。

结果

在两种方法中,聚类的最佳数量均为五个。前三个聚类在性别分布和心率方面存在差异,但具有相似的低CV风险特征。另一方面,聚类5具有最差的CV特征,与其他聚类相比,左心室重构和舒张功能障碍的患病率更高。聚类4的各项指标介于聚类1至3和聚类5之间。在调整传统危险因素后,与聚类1、2和3相比,聚类5发生心脏事件的风险最高(风险比,1.36;95%CI,1.09 - 1.70;P = 0.0063)。当将模型应用于外部验证队列时,获得了相似的LA应变模式,并且临床特征显示所有聚类的CV风险特征相似。

结论

在时间序列LA应变曲线中使用的无监督机器学习算法识别出了具有临床意义的LA变形聚类,并提供了优于传统危险因素的增量预后信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验