Sabovčik František, Cauwenberghs Nicholas, Vens Celine, Kuznetsova Tatiana
Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Block D, Box 7001, B 3000 Leuven, Belgium.
Department of Public Health and Primary Care, Kulak Kortrijk Campus, University of Leuven, Leuven, Belgium.
Eur Heart J Digit Health. 2021 Apr 19;2(3):390-400. doi: 10.1093/ehjdh/ztab042. eCollection 2021 Sep.
There is a need for better phenotypic characterization of the asymptomatic stages of cardiac maladaptation. We tested the hypothesis that an unsupervised clustering analysis utilizing echocardiographic indexes reflecting left heart structure and function could identify phenotypically distinct groups of asymptomatic individuals in the general population.
We prospectively studied 1407 community-dwelling individuals (mean age, 51.2 years; 51.1% women), in whom we performed clinical and echocardiographic examination at baseline and collected cardiac events on average 8.8 years later. Cardiac phenotypes that were correlated at > 0.8 were filtered, leaving 21 echocardiographic features, and systolic blood pressure for phenogrouping. We employed hierarchical and Gaussian mixture model-based clustering. Cox regression was used to demonstrate the clinical validity of constructed phenogroups. Unsupervised clustering analyses classified study participants into three distinct phenogroups that differed markedly in echocardiographic indexes. Indeed, cluster 3 had the worst left ventricular (LV) diastolic function (i.e. lowest ' velocity and left atrial (LA) reservoir strain, highest /', and LA volume index) and LV remodelling. The phenogroups were also different in cardiovascular risk factor profiles. We observed increase in the risk for incidence of adverse events across phenogroups. In the third phenogroup, the multivariable adjusted risk was significantly higher than the average population risk for major cardiovascular events (51%, = 0.0028).
Unsupervised learning algorithms integrating routinely measured cardiac imaging and haemodynamic data can provide a clinically meaningful classification of cardiac health in asymptomatic individuals. This approach might facilitate early detection of cardiac maladaptation and improve risk stratification.
需要对心脏适应不良的无症状阶段进行更好的表型特征描述。我们检验了这样一个假设,即利用反映左心结构和功能的超声心动图指标进行无监督聚类分析,可以在一般人群中识别出表型不同的无症状个体组。
我们前瞻性地研究了1407名社区居民(平均年龄51.2岁;51.1%为女性),在基线时对他们进行了临床和超声心动图检查,并平均在8.8年后收集心脏事件。对相关性大于0.8的心脏表型进行筛选,留下21个超声心动图特征以及收缩压用于表型分组。我们采用了基于层次聚类和高斯混合模型的聚类方法。使用Cox回归来证明构建的表型组的临床有效性。无监督聚类分析将研究参与者分为三个不同的表型组,这些组在超声心动图指标上有显著差异。事实上,第3组的左心室(LV)舒张功能最差(即最低的“速度”和左心房(LA)储备应变、最高的“/”以及LA容积指数)且LV重塑最严重。这些表型组在心血管危险因素谱方面也有所不同。我们观察到各表型组不良事件发生率的风险增加。在第三个表型组中,多变量调整后的风险显著高于主要心血管事件的平均人群风险(51%,P = 0.0028)。
整合常规测量的心脏成像和血流动力学数据的无监督学习算法可以为无症状个体的心脏健康提供具有临床意义的分类。这种方法可能有助于早期发现心脏适应不良并改善风险分层。