Suppr超能文献

组学和远程同源整合解析蛋白质功能。

Omics and Remote Homology Integration to Decipher Protein Functionality.

机构信息

CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.

Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.

出版信息

Methods Mol Biol. 2023;2627:61-81. doi: 10.1007/978-1-0716-2974-1_4.

Abstract

In the recent years, several "omics" technologies based on specific biomolecules (from DNA, RNA, proteins, or metabolites) have won growing importance in the scientific field. Despite each omics possess their own laboratorial protocols, they share a background of bioinformatic tools for data integration and analysis. A recent subset of bioinformatic tools, based on available templates or remote homology protocols, allow computational fast and high-accuracy prediction of protein structures. The quickly predict of actually unsolved protein structures, together with late omics findings allow a boost of scientific advances in multiple fields such as cancer, longevity, immunity, mitochondrial function, toxicology, drug design, biosensors, and recombinant protein engineering. In this chapter, we assessed methodological approaches for the integration of omics and remote homology inferences to decipher protein functionality, opening the door to the next era of biological knowledge.

摘要

近年来,几种基于特定生物分子(DNA、RNA、蛋白质或代谢物)的“组学”技术在科学界的重要性日益增加。尽管每种组学都有自己的实验室方案,但它们都共享用于数据集成和分析的生物信息学工具。最近的一组生物信息学工具基于可用的模板或远程同源协议,允许快速准确地预测蛋白质结构。快速预测实际未解决的蛋白质结构,加上后期组学发现,推动了癌症、长寿、免疫、线粒体功能、毒理学、药物设计、生物传感器和重组蛋白工程等多个领域的科学进步。在本章中,我们评估了将组学和远程同源推断整合以破译蛋白质功能的方法,为生物学知识的下一个时代打开了大门。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验