基于 PPMI 和注意力网络的 miRNA-疾病关联预测。

Predicting miRNA-disease associations based on PPMI and attention network.

机构信息

Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China.

School of Artificial Intelligence, Jilin University, Changchun, China.

出版信息

BMC Bioinformatics. 2023 Mar 23;24(1):113. doi: 10.1186/s12859-023-05152-z.

Abstract

BACKGROUND

With the development of biotechnology and the accumulation of theories, many studies have found that microRNAs (miRNAs) play an important role in various diseases. Uncovering the potential associations between miRNAs and diseases is helpful to better understand the pathogenesis of complex diseases. However, traditional biological experiments are expensive and time-consuming. Therefore, it is necessary to develop more efficient computational methods for exploring underlying disease-related miRNAs.

RESULTS

In this paper, we present a new computational method based on positive point-wise mutual information (PPMI) and attention network to predict miRNA-disease associations (MDAs), called PATMDA. Firstly, we construct the heterogeneous MDA network and multiple similarity networks of miRNAs and diseases. Secondly, we respectively perform random walk with restart and PPMI on different similarity network views to get multi-order proximity features and then obtain high-order proximity representations of miRNAs and diseases by applying the convolutional neural network to fuse the learned proximity features. Then, we design an attention network with neural aggregation to integrate the representations of a node and its heterogeneous neighbor nodes according to the MDA network. Finally, an inner product decoder is adopted to calculate the relationship scores between miRNAs and diseases.

CONCLUSIONS

PATMDA achieves superior performance over the six state-of-the-art methods with the area under the receiver operating characteristic curve of 0.933 and 0.946 on the HMDD v2.0 and HMDD v3.2 datasets, respectively. The case studies further demonstrate the validity of PATMDA for discovering novel disease-associated miRNAs.

摘要

背景

随着生物技术的发展和理论的积累,许多研究发现 microRNAs(miRNAs)在各种疾病中起着重要作用。揭示 miRNAs 与疾病之间的潜在关联有助于更好地理解复杂疾病的发病机制。然而,传统的生物学实验既昂贵又耗时。因此,有必要开发更有效的计算方法来探索潜在的疾病相关 miRNAs。

结果

在本文中,我们提出了一种新的基于正点互信息(PPMI)和注意力网络的计算方法来预测 miRNA-疾病关联(MDAs),称为 PATMDA。首先,我们构建了异质 MDA 网络和 miRNA 和疾病的多个相似性网络。其次,我们分别在不同的相似性网络视图上进行随机游走和 PPMI,以获得多阶接近特征,然后通过应用卷积神经网络融合学习到的接近特征,获得 miRNA 和疾病的高阶接近表示。然后,我们设计了一个具有神经聚合的注意力网络,根据 MDA 网络根据节点及其异质邻居节点的表示来集成。最后,采用内积解码器计算 miRNA 和疾病之间的关系得分。

结论

PATMDA 在 HMDD v2.0 和 HMDD v3.2 数据集上的接收器工作特征曲线下面积分别为 0.933 和 0.946,优于六种最先进的方法。案例研究进一步证明了 PATMDA 发现新的疾病相关 miRNA 的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66ea/10037801/be321469a564/12859_2023_5152_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索