Suppr超能文献

使用独特的镓有机框架对血清中的阿米卡星进行检测的具有高灵敏度和选择性的发光传感器。

Luminescent Sensor with High Sensitivity and Selectivity for Amikacin Detection in a Serum using a Unique Gallium-Organic Framework.

作者信息

Xie Yao, Jiao Zhuo-Hao, Dong Jie, Hou Sheng-Li, Zhao Bin

机构信息

Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China.

School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, P. R. China.

出版信息

Inorg Chem. 2023 Apr 3;62(13):5168-5175. doi: 10.1021/acs.inorgchem.3c00019. Epub 2023 Mar 23.

Abstract

Amikacin is a widely used antibiotic in the treatment of Gram-negative bacteria, but high concentrations of amikacin can cause cochlear nerve damage. Therefore, accurate and quick detection of the concentration of amikacin is desired and important. In this work, we have synthesized a new gallium-organic framework {[(CH)(NH)Ga(PPTA)]·0.5DMF} () (HPPTA = 4,4',4″,4″'-(1-4-phenlene-bis(pyridine-4,2,6-triyl)) with good solvent and pH stabilities. A structure analysis reveals that is a twofold interpenetrated framework exhibiting a large 1D square aperture with a size of 10.8 Å × 14 Å. The experimental results show that can be used as a stable, fast, and recyclable luminescent probe for the detection of amikacin in aqueous solution and serum. The limit of detection is 2.9 × 10 mol/L, which is lower than the harmful concentration of amikacin in human serum. This is the first example of a metal-organic framework used for luminescence sensing of amikacin.

摘要

阿米卡星是一种广泛用于治疗革兰氏阴性菌的抗生素,但高浓度的阿米卡星会导致耳蜗神经损伤。因此,准确快速地检测阿米卡星的浓度是很有必要且重要的。在这项工作中,我们合成了一种新的镓有机框架{[(CH)(NH)Ga(PPTA)]·0.5DMF} () (HPPTA = 4,4',4″,4″'-(1-4-亚苯基-双(吡啶-4,2,6-三基)),具有良好的溶剂稳定性和pH稳定性。结构分析表明, 是一种具有10.8 Å × 14 Å尺寸的大一维方形孔径的双贯穿框架。实验结果表明, 可作为一种稳定、快速且可循环使用的发光探针,用于检测水溶液和血清中的阿米卡星。检测限为2.9 × 10 mol/L,低于阿米卡星在人血清中的有害浓度。这是用于阿米卡星发光传感的金属有机框架的首个实例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验