Suppr超能文献

进化历史解释了丛枝菌根和外生菌根植物物种之间叶片光谱差异的原因。

Evolutionary history explains foliar spectral differences between arbuscular and ectomycorrhizal plant species.

机构信息

Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada.

Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.

出版信息

New Phytol. 2023 Jun;238(6):2651-2667. doi: 10.1111/nph.18902. Epub 2023 Apr 10.

Abstract

Leaf spectra are integrated foliar phenotypes that capture a range of traits and can provide insight into ecological processes. Leaf traits, and therefore leaf spectra, may reflect belowground processes such as mycorrhizal associations. However, evidence for the relationship between leaf traits and mycorrhizal association is mixed, and few studies account for shared evolutionary history. We conduct partial least squares discriminant analysis to assess the ability of spectra to predict mycorrhizal type. We model the evolution of leaf spectra for 92 vascular plant species and use phylogenetic comparative methods to assess differences in spectral properties between arbuscular mycorrhizal and ectomycorrhizal plant species. Partial least squares discriminant analysis classified spectra by mycorrhizal type with 90% (arbuscular) and 85% (ectomycorrhizal) accuracy. Univariate models of principal components identified multiple spectral optima corresponding with mycorrhizal type due to the close relationship between mycorrhizal type and phylogeny. Importantly, we found that spectra of arbuscular mycorrhizal and ectomycorrhizal species do not statistically differ from each other after accounting for phylogeny. While mycorrhizal type can be predicted from spectra, enabling the use of spectra to identify belowground traits using remote sensing, this is due to evolutionary history and not because of fundamental differences in leaf spectra due to mycorrhizal type.

摘要

叶片光谱是整合的叶片表型,可捕捉一系列特征,并深入了解生态过程。叶片特征(因此也包括叶片光谱)可能反映地下过程,如菌根共生。然而,叶片特征与菌根共生关系的证据相互矛盾,并且很少有研究考虑到共同的进化历史。我们采用偏最小二乘判别分析来评估光谱预测菌根类型的能力。我们对 92 种维管束植物的叶片光谱进行建模,并利用系统发育比较方法来评估菌根植物物种之间光谱特性的差异。偏最小二乘判别分析能够以 90%(丛枝菌根)和 85%(外生菌根)的准确度根据菌根类型对光谱进行分类。主成分的单变量模型确定了多个与菌根类型相对应的光谱最优值,这是由于菌根类型与系统发育之间的密切关系。重要的是,我们发现,在考虑了系统发育后,丛枝菌根和外生菌根物种的光谱在统计学上没有差异。虽然可以根据光谱预测菌根类型,从而利用遥感技术来识别地下特征,但这是由于进化历史造成的,而不是由于菌根类型导致叶片光谱存在根本差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验