Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.
Ecol Lett. 2023 Nov;26(11):1862-1876. doi: 10.1111/ele.14309. Epub 2023 Sep 27.
Mycorrhizal symbioses are known to strongly influence plant performance, structure plant communities and shape ecosystem dynamics. Plant mycorrhizal traits, such as those characterising mycorrhizal type (arbuscular (AM), ecto-, ericoid or orchid mycorrhiza) and status (obligately (OM), facultatively (FM) or non-mycorrhizal) offer valuable insight into plant belowground functionality. Here, we compile available plant mycorrhizal trait information and global occurrence data ( 100 million records) for 11,770 vascular plant species. Using a plant phylogenetic mega-tree and high-resolution climatic and edaphic data layers, we assess phylogenetic and environmental correlates of plant mycorrhizal traits. We find that plant mycorrhizal type is more phylogenetically conserved than plant mycorrhizal status, while environmental variables (both climatic and edaphic; notably soil texture) explain more variation in mycorrhizal status, especially FM. The previously underestimated role of environmental conditions has far-reaching implications for our understanding of ecosystem functioning under changing climatic and soil conditions.
菌根共生关系被认为强烈影响植物的表现,构建植物群落并塑造生态系统动态。植物菌根特征,如菌根类型(丛枝菌根 (AM)、外生菌根、杜鹃花菌根或兰科菌根)和状态(专性 (OM)、兼性 (FM) 或非菌根),为植物的地下功能提供了有价值的见解。在这里,我们编译了可用的植物菌根特征信息和全球发生数据(1 亿条记录),用于 11770 种维管植物。使用植物系统发育 mega 树和高分辨率气候和土壤数据层,我们评估了植物菌根特征的系统发育和环境相关性。我们发现植物菌根类型比植物菌根状态更具系统发育保守性,而环境变量(气候和土壤;特别是土壤质地)解释了菌根状态的更多变异性,尤其是 FM。以前被低估的环境条件的作用对我们在变化的气候和土壤条件下理解生态系统功能具有深远的意义。