Suppr超能文献

抗癌候选药物的优化建模。

Optimization Modeling of Anti - breast Cancer Candidate Drugs.

机构信息

School of Mathematics and Statistics, Northeast Petroleum University, Daqing City, Heilongjiang, China.

出版信息

Biotechnol Genet Eng Rev. 2024 Oct;40(2):1334-1352. doi: 10.1080/02648725.2023.2193484. Epub 2023 Mar 24.

Abstract

To explore how to control the estrogen level in vivo by regulating the activity of the estrogen receptor in the development of breast cancer drugs, multiple-featured evaluation methods were first applied to screen the molecular descriptors of compounds according to the information of antagonist ERα provided in this study. Combining the methods of Extreme Gradient Boost (XGBoost), Light Gradient Boosting Machine (LightGBM) and Random Forest (RF), a stacking-integrated regression model for quantitatively predicting the ERα (estrogen receptors alpha) activity of breast cancer candidate drug was constructed, which considered the compounds acting on the target and their biological activity data, a series of molecular structure descriptors as the independent variables, and the biological activity values as the dependent variables. Then, three classification methods of XGBoost, LightGBM, and Gradient Boosting Decision Tree (GBDT) were selected and the voting strategy was applied to build five ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) classification prediction models. Finally, two schemes based on genetic algorithm (GA) were used to optimize the model and provide predictions for optimizing the biological activity and ADMET properties of ERα antagonists simultaneously. Results showed that the model prediction has strong practical significance, which can guide the structural optimization of existing active compounds and improve the activity of anti-breast cancer candidate drugs.

摘要

为了探索通过调节雌激素受体的活性来控制体内雌激素水平,从而开发治疗乳腺癌的药物,首先应用多特征评价方法,根据本研究中提供的拮抗剂 ERα 的信息,筛选化合物的分子描述符。结合极端梯度提升(XGBoost)、轻梯度提升机(LightGBM)和随机森林(RF)的方法,构建了一个用于定量预测乳腺癌候选药物 ERα(雌激素受体 alpha)活性的堆叠集成回归模型,该模型考虑了作用于靶点的化合物及其生物活性数据、一系列分子结构描述符作为自变量,以及生物活性值作为因变量。然后,选择了 XGBoost、LightGBM 和梯度提升决策树(GBDT)三种分类方法,并应用投票策略构建了五个 ADMET(吸收、分布、代谢、排泄和毒性)分类预测模型。最后,使用两种基于遗传算法(GA)的方案对模型进行优化,同时提供对 ERα 拮抗剂生物活性和 ADMET 性质进行优化的预测。结果表明,该模型的预测具有很强的实际意义,可以指导现有活性化合物的结构优化,提高抗乳腺癌候选药物的活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验