Department of Chemistry, Yale University, New Haven, CT 06520, USA.
Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
Sci Adv. 2023 Mar 24;9(12):eadg0251. doi: 10.1126/sciadv.adg0251.
To compete in certain low-light environments, some cyanobacteria express a paralog of the light-harvesting phycobiliprotein, allophycocyanin (AP), that strongly absorbs far-red light (FRL). Using cryo-electron microscopy and time-resolved absorption spectroscopy, we reveal the structure-function relationship of this FRL-absorbing AP complex (FRL-AP) that is expressed during acclimation to low light and that likely associates with chlorophyll a-containing photosystem I. FRL-AP assembles as helical nanotubes rather than typical toroids due to alterations of the domain geometry within each subunit. Spectroscopic characterization suggests that FRL-AP nanotubes are somewhat inefficient antenna; however, the enhanced ability to harvest FRL when visible light is severely attenuated represents a beneficial trade-off. The results expand the known diversity of light-harvesting proteins in nature and exemplify how biological plasticity is achieved by balancing resource accessibility with efficiency.
为了在某些低光环境中竞争,一些蓝藻表达了藻胆蛋白的光捕获蛋白的一种同源物,别藻蓝蛋白(AP),它强烈吸收远红光(FRL)。通过低温电子显微镜和时间分辨吸收光谱,我们揭示了这种在低光照条件下表达并可能与含有叶绿素 a 的光系统 I 结合的 FRL 吸收 AP 复合物(FRL-AP)的结构-功能关系。由于每个亚基内的结构域几何形状的改变,FRL-AP 组装成螺旋纳米管而不是典型的环。光谱特征表明,FRL-AP 纳米管的天线效率较低;然而,当可见光严重衰减时,增强了对 FRL 的吸收能力,这是一种有益的权衡。研究结果扩展了自然界中已知的光捕获蛋白的多样性,并例证了如何通过平衡资源可及性与效率来实现生物的可塑性。