Suppr超能文献

小学入学时的儿童超重和肥胖:妊娠及生命早期预测模型的外部验证

Childhood overweight and obesity at the start of primary school: External validation of pregnancy and early-life prediction models.

作者信息

Ziauddeen Nida, Roderick Paul J, Santorelli Gillian, Wright John, Alwan Nisreen A

机构信息

School of Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.

NIHR Applied Research Collaboration Wessex, Southampton, United Kingdom.

出版信息

PLOS Glob Public Health. 2022 Jun 9;2(6):e0000258. doi: 10.1371/journal.pgph.0000258. eCollection 2022.

Abstract

Tackling the childhood obesity epidemic can potentially be facilitated by risk-stratifying families at an early-stage to receive prevention interventions and extra support. Using data from the Born in Bradford (BiB) cohort, this analysis aimed to externally validate prediction models for childhood overweight and obesity developed as part of the Studying Lifecourse Obesity PrEdictors (SLOPE) study in Hampshire. BiB is a longitudinal multi-ethnic birth cohort study which recruited women at around 28 weeks gestation between 2007 and 2010 in Bradford. The outcome was body mass index (BMI) ≥91st centile for overweight/obesity at 4-5 years. Discrimination was assessed using the area under the receiver operating curve (AUC). Calibration was assessed for each tenth of predicted risk by calculating the ratio of predicted to observed risk and plotting observed proportions versus predicted probabilities. Data were available for 8003 children. The AUC on external validation was comparable to that on development at all stages (early pregnancy, birth, ~1 year and ~2 years). The AUC on external validation ranged between 0.64 (95% confidence interval (CI) 0.62 to 0.66) at early pregnancy and 0.82 (95% CI 0.81 to 0.84) at ~2 years compared to 0.66 (95% CI 0.65 to 0.67) and 0.83 (95% CI 0.82 to 0.84) on model development in SLOPE. Calibration was better in the later model stages (early life ~1 year and ~2 years). The SLOPE models developed for predicting childhood overweight and obesity risk performed well on external validation in a UK birth cohort with a different geographical location and ethnic composition.

摘要

通过对家庭进行早期风险分层,使其获得预防干预措施和额外支持,可能有助于应对儿童肥胖流行问题。本分析利用来自布拉德福德出生队列(BiB)的数据,旨在对作为汉普郡生命周期肥胖预测研究(SLOPE)一部分而开发的儿童超重和肥胖预测模型进行外部验证。BiB是一项纵向多民族出生队列研究,于2007年至2010年在布拉德福德招募了妊娠约28周的妇女。结局指标是4至5岁时超重/肥胖的体重指数(BMI)≥第91百分位数。使用受试者工作特征曲线下面积(AUC)评估辨别力。通过计算预测风险与观察风险的比率,并绘制观察比例与预测概率的关系图,对预测风险的每十分之一进行校准评估。共有8003名儿童的数据可用。外部验证时的AUC在所有阶段(早孕、出生、约1岁和约2岁)均与模型开发时相当。外部验证时的AUC在早孕时为0.64(95%置信区间(CI)0.62至0.66),在约2岁时为0.82(95%CI 0.81至0.84),而SLOPE模型开发时分别为0.66(95%CI 0.65至0.67)和0.83(95%CI 0.82至0.84)。校准在模型后期阶段(生命早期约1岁和约2岁)表现更好。为预测儿童超重和肥胖风险而开发的SLOPE模型,在具有不同地理位置和种族构成的英国出生队列的外部验证中表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/502b/10022097/395fb1e91062/pgph.0000258.g001.jpg

相似文献

1
Childhood overweight and obesity at the start of primary school: External validation of pregnancy and early-life prediction models.
PLOS Glob Public Health. 2022 Jun 9;2(6):e0000258. doi: 10.1371/journal.pgph.0000258. eCollection 2022.
7
i-PATHWAY: Development and validation of a prediction model for childhood obesity in an Australian prospective birth cohort.
J Paediatr Child Health. 2021 Aug;57(8):1250-1258. doi: 10.1111/jpc.15436. Epub 2021 Mar 13.

引用本文的文献

1
Consumer Health Informatics to Advance Precision Prevention.
Yearb Med Inform. 2024 Aug;33(1):149-157. doi: 10.1055/s-0044-1800735. Epub 2025 Apr 8.
2
Mixed methods feasibility and usability testing of a childhood obesity risk estimation tool.
BMC Public Health. 2023 Sep 4;23(1):1719. doi: 10.1186/s12889-023-16500-2.

本文引用的文献

4
Predicting childhood overweight and obesity using maternal and early life risk factors: a systematic review.
Obes Rev. 2018 Mar;19(3):302-312. doi: 10.1111/obr.12640. Epub 2017 Dec 19.
7
Developing prediction equations and a mobile phone application to identify infants at risk of obesity.
PLoS One. 2013 Aug 7;8(8):e71183. doi: 10.1371/journal.pone.0071183. Print 2013.
8
Estimating overweight risk in childhood from predictors during infancy.
Pediatrics. 2013 Aug;132(2):e414-21. doi: 10.1542/peds.2012-3858. Epub 2013 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验