Hu Kai, Keenan Katherine, Hale Jo Mhairi, Liu Yang, Kulu Hill
Population and Health Research Group, School of Geography and Sustainable Development, University of St Andrews, Fife, United Kingdom.
Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America.
PLOS Glob Public Health. 2022 Jun 29;2(6):e0000520. doi: 10.1371/journal.pgph.0000520. eCollection 2022.
While previous studies have emphasised the role of individual factors in understanding multimorbidity disparities, few have investigated contextual factors such as air pollution (AP). We first use cross-sectional latent class analysis (LCA) to assess the associations between PM2.5 exposure and multimorbidity disease clusters, and then estimate the associations between PM2.5 exposure and the development of multimorbidity longitudinally using growth curve modelling (GCM) among adults aged 45-85 in China. The results of LCA modelling suggest four latent classes representing three multimorbidity patterns (respiratory, musculoskeletal, cardio-metabolic) and one healthy pattern. The analysis shows that a 1 μg/m3 increase in cumulative exposure to PM2.5 is associated with a higher likelihood of belonging to respiratory, musculoskeletal or cardio-metabolic clusters: 2.4% (95% CI: 1.02, 1.03), 1.5% (95% CI: 1.01, 1.02) and 3.3% (95% CI: 1.03, 1.04), respectively. The GCM models show that there is a u-shaped association between PM2.5 exposure and multimorbidity, indicating that both lower and higher PM2.5 exposure is associated with increased multimorbidity levels. Higher multimorbidity in areas of low AP is explained by clustering of musculoskeletal diseases, whereas higher AP is associated with cardio-metabolic disease clusters. The study shows how multimorbidity clusters vary contextually and that PM2.5 exposure is more detrimental to health among older adults.
虽然先前的研究强调了个体因素在理解多重疾病差异中的作用,但很少有研究调查空气污染(AP)等背景因素。我们首先使用横断面潜在类别分析(LCA)来评估PM2.5暴露与多重疾病集群之间的关联,然后使用生长曲线模型(GCM)纵向估计中国45至85岁成年人中PM2.5暴露与多重疾病发展之间的关联。LCA建模结果表明有四个潜在类别,代表三种多重疾病模式(呼吸、肌肉骨骼、心血管代谢)和一种健康模式。分析表明,PM2.5累积暴露每增加1μg/m3,属于呼吸、肌肉骨骼或心血管代谢集群的可能性就更高:分别为2.4%(95%CI:1.02,1.03)、1.5%(95%CI:1.01,1.02)和3.3%(95%CI:1.03,1.04)。GCM模型表明,PM2.5暴露与多重疾病之间存在U形关联,这表明较低和较高的PM2.5暴露都与多重疾病水平的增加有关。低空气污染地区较高的多重疾病率是由肌肉骨骼疾病的聚集所解释的,而较高的空气污染与心血管代谢疾病集群有关。该研究表明了多重疾病集群如何因背景而异,以及PM2.5暴露对老年人的健康危害更大。