Suppr超能文献

四种机械通气-呼气装置的比较:模拟气道塌陷对咳嗽峰流速的影响。

Comparison of Four Mechanical Insufflation-Exsufflation Devices: Effect of Simulated Airway Collapse on Cough Peak Flow.

机构信息

Centre Hospitalier Universitaire Grenoble Alpes, Médecine Intensive Réanimation, INSERM, Université Grenoble-Alpes, Grenoble, France.

Clinical Investigation Centre 1429, APHP, Hôpital Raymond-Poincaré, Garches, France.

出版信息

Respir Care. 2023 Apr;68(4):462-469. doi: 10.4187/respcare.10086.

Abstract

BACKGROUND

Mechanical insufflation-exsufflation (MI-E) devices are used to improve airway clearance in individuals with acute respiratory failure. Some MI-E devices measure cough peak flow (CPF) during MI-E to optimize pressure adjustments. The aim was to compare CPF and effective cough volume (ECV: volume expired/coughed > 3 L/s) measurements between 4 MI-E devices under simulated conditions of stable versus collapsed airway.

METHODS

Four MI-E devices were tested on the bench. Each device was connected via a standard circuit to a collapsible tube placed in an airtight chamber that was attached to a lung model with adjustable compliance and resistance. Pressure was measured upstream and downstream the collapsing tube; air flow was measured between the chamber and the lung model. Each device was tested in 2 conditions: collapse condition (0 cm HO) and no-collapse condition (-70 cm HO). For each condition, 6 combinations of inspiratory/expiratory pressures were applied. CPF was measured at the "mouth level" by the device built-in flow meter and at the "tracheal level" by a dedicated pneumotachograph. Comparisons were performed with non-parametric tests.

RESULTS

CPF values measured at the tracheal level and ECV values differed between devices for each inspiratory/expiratory pressure in the collapse and no-collapse conditions ( < .001). CPF values were significantly lower at the tracheal level in the collapse as compared with the no-collapse condition ( < .001 for each device), whereas they were higher at the mouth level ( < .05) for 3 of the 4 devices.

CONCLUSIONS

CPF values differed significantly across MI-E devices, highlighting limitation(s) of using only CPF values to determine cough effectiveness. In simulated of airway collapse, CPF increased at the mouth, whereas it decreased at the tracheal level.

摘要

背景

机械通气-呼气(MI-E)设备用于改善急性呼吸衰竭患者的气道清除能力。一些 MI-E 设备在 MI-E 期间测量咳嗽峰流速(CPF),以优化压力调整。目的是在稳定与塌陷气道的模拟条件下比较 4 种 MI-E 设备的 CPF 和有效咳嗽量(ECV:呼出/咳出的体积> 3 L/s)测量值。

方法

在台架上测试了 4 种 MI-E 设备。每个设备都通过标准电路连接到放置在密封室中的可折叠管,该管连接到具有可调节顺应性和阻力的肺模型。在折叠管的上游和下游测量压力;在腔室和肺模型之间测量气流。每个设备在 2 种条件下进行测试:塌陷条件(0 cm HO)和无塌陷条件(-70 cm HO)。对于每种条件,应用 6 种吸气/呼气压力组合。CPF 通过设备内置的流量计在“口腔水平”测量,通过专用的呼吸量计在“气管水平”测量。使用非参数检验进行比较。

结果

在塌陷和无塌陷条件下,对于每个吸气/呼气压力,CPF 值在气管水平和 ECV 值在不同设备之间均存在差异(<0.001)。与无塌陷条件相比,塌陷条件下 CPF 值在气管水平显著降低(每个设备<0.001),而在口腔水平则升高(对于 4 个设备中的 3 个<0.05)。

结论

CPF 值在 MI-E 设备之间存在显著差异,这凸显了仅使用 CPF 值来确定咳嗽效果的局限性。在气道塌陷模拟中,CPF 在口腔处增加,而在气管水平处减少。

相似文献

2
Bench Assessment of the Effect of a Collapsible Tube on the Efficiency of a Mechanical Insufflation-Exsufflation Device.
Respir Care. 2019 Jul;64(7):752-759. doi: 10.4187/respcare.06478. Epub 2019 Mar 12.
4
Accuracy of Real-Time Data Provided by Mechanical Insufflation-Exsufflation Devices.
Respir Care. 2025 Mar;70(3):313-318. doi: 10.4187/respcare.12221. Epub 2024 Oct 29.
5
Airway Clearance With an Optimized Mechanical Insufflation-Exsufflation Maneuver.
Respir Care. 2018 Oct;63(10):1214-1222. doi: 10.4187/respcare.05965. Epub 2018 Jul 17.
6
Peak Cough Flow Fails to Detect Upper Airway Collapse During Negative Pressure Titration for Cough-Assist.
Arch Phys Med Rehabil. 2019 Dec;100(12):2346-2353. doi: 10.1016/j.apmr.2019.06.012. Epub 2019 Jul 24.
7
Approaches to Cough Peak Flow Measurement With Duchenne Muscular Dystrophy.
Respir Care. 2018 Dec;63(12):1514-1519. doi: 10.4187/respcare.06124. Epub 2018 Sep 11.
8
Peak Expiratory Flow During Mechanical Insufflation-Exsufflation: Endotracheal Tube Versus Face Mask.
Respir Care. 2021 Dec;66(12):1815-1823. doi: 10.4187/respcare.09150. Epub 2021 Jul 7.

本文引用的文献

1
Accuracy in the Assessment of Cough Peak Flow: Good Progress for a "Work in Progress".
Respir Care. 2020 Jan;65(1):133-134. doi: 10.4187/respcare.07454.
2
Peak Cough Flow Fails to Detect Upper Airway Collapse During Negative Pressure Titration for Cough-Assist.
Arch Phys Med Rehabil. 2019 Dec;100(12):2346-2353. doi: 10.1016/j.apmr.2019.06.012. Epub 2019 Jul 24.
3
Bench Assessment of the Effect of a Collapsible Tube on the Efficiency of a Mechanical Insufflation-Exsufflation Device.
Respir Care. 2019 Jul;64(7):752-759. doi: 10.4187/respcare.06478. Epub 2019 Mar 12.
4
Titration of Mechanical Insufflation-Exsufflation Optimal Pressure Combinations in Neuromuscular Diseases by Flow/Pressure Waveform Analysis.
Arch Bronconeumol (Engl Ed). 2019 May;55(5):246-251. doi: 10.1016/j.arbres.2018.10.011. Epub 2018 Dec 28.
5
Approaches to Cough Peak Flow Measurement With Duchenne Muscular Dystrophy.
Respir Care. 2018 Dec;63(12):1514-1519. doi: 10.4187/respcare.06124. Epub 2018 Sep 11.
6
Physiology of respiratory disturbances in muscular dystrophies.
Breathe (Sheff). 2016 Dec;12(4):318-327. doi: 10.1183/20734735.012716.
8
Peak cough flow measurement with a pneumotacograph and a portable peak flow meter in patients with neuromuscular diseases.
Rev Port Pneumol (2006). 2017 Jan-Feb;23(1):39-40. doi: 10.1016/j.rppnen.2016.08.003. Epub 2016 Oct 18.
9
Laryngeal response patterns influence the efficacy of mechanical assisted cough in amyotrophic lateral sclerosis.
Thorax. 2017 Mar;72(3):221-229. doi: 10.1136/thoraxjnl-2015-207555. Epub 2016 May 12.
10
Bench Comparative Assessment of Mechanically Assisted Cough Devices.
Respir Care. 2015 Jul;60(7):975-82. doi: 10.4187/respcare.03809. Epub 2015 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验