Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 16000, Prague 6, Czech Republic.
Department of Decision-Making Theory, Institute of Information Theory and Automation, Czech Academy of Sciences, Pod Vodárenskou věží 4, 18200, Prague 8, Czech Republic.
Sci Rep. 2023 Mar 24;13(1):4865. doi: 10.1038/s41598-023-31786-3.
Wang tiles enable efficient pattern compression while avoiding the periodicity in tile distribution via programmable matching rules. However, most research in Wang tilings has considered tiling the infinite plane. Motivated by emerging applications in materials engineering, we consider the bounded version of the tiling problem and offer four integer programming formulations to construct valid or nearly-valid Wang tilings: a decision, maximum-rectangular tiling, maximum cover, and maximum adjacency constraint satisfaction formulations. To facilitate a finer control over the resulting tilings, we extend these programs with tile-based, color-based, packing, and variable-sized periodic constraints. Furthermore, we introduce an efficient heuristic algorithm for the maximum-cover variant based on the shortest path search in directed acyclic graphs and derive simple modifications to provide a 1/2 approximation guarantee for arbitrary tile sets, and a 2/3 guarantee for tile sets with cyclic transducers. Finally, we benchmark the performance of the integer programming formulations and of the heuristic algorithms showing that the heuristics provide very competitive outputs in a fraction of time. As a by-product, we reveal errors in two well-known aperiodic tile sets: the Knuth tile set contains a tile unusable in two-way infinite tilings, and the Lagae corner tile set is not aperiodic.
王瓷砖通过可编程匹配规则实现高效的模式压缩,同时避免瓷砖分布的周期性。然而,大多数王瓷砖的研究都考虑了无限平面的瓷砖问题。受材料工程中新兴应用的启发,我们考虑了瓷砖问题的有界版本,并提出了四种整数规划公式来构造有效或近似有效的王瓷砖:决策、最大矩形瓷砖、最大覆盖和最大邻接约束满足公式。为了更精细地控制生成的瓷砖,我们使用基于瓷砖、基于颜色、基于包装和基于可变大小周期性的约束来扩展这些程序。此外,我们引入了一种基于有向无环图最短路径搜索的最大覆盖变体的有效启发式算法,并为任意瓷砖集提供了简单的修改,以提供 1/2 的近似保证,为具有循环换能器的瓷砖集提供 2/3 的保证。最后,我们对整数规划公式和启发式算法的性能进行了基准测试,结果表明启发式算法在很短的时间内提供了非常有竞争力的输出。作为副产品,我们揭示了两个著名的非周期性瓷砖集的错误:Knuth 瓷砖集中有一个在双向无限瓷砖中无法使用的瓷砖,而 Lagae 角瓷砖集不是非周期性的。