Halder Sudipa, Bhattacharya Shuvoshri, Roy Malabika Biswas, Roy Pankaj Kumar
School of Water Resources Engineering, Jadavpur University, Kolkata, West Bengal, India.
Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, UK.
Environ Sci Pollut Res Int. 2023 Apr;30(20):57529-57557. doi: 10.1007/s11356-023-26394-7. Epub 2023 Mar 25.
The current research is focused on detecting a river basin suitable for agriculture and priority for management using a new clustering tool of groundwater quality with fuzzy logic technique in R and Geographical Information System. A new fuzzy clustering-soft computing technique has been executed to determine the different hydrochemical zones considering 13 essential parameters such as electrical conductivity, hardness, chloride, sodium adsorption ratio, residual sodium carbonate, soluble sodium percent, magnesium hazard, permeability index, potential salinity, residual sodium bicarbonate, Kelly's ratio, synthetic harmful coefficient, and exchangeable sodium percentage. The derived fuzzy C-mean clustering (FCM) outperformed other available hard computing techniques like hierarchical clustering, K-means clustering, and agglomerative clustering. It divided the sampling sites into 2 clustering groups (FCM I and FCM II) which has been validated using fuzzy silhouette index (0.85), the partition coefficient (0.76), the partial entropy (0.68), and the modified partition coefficient (0.52). The hydrogeochemical analysis confirmed that the rock-water interaction, chemical weathering, and ion exchange process are predominant in the aquifer system of the study area. According to the correlation plots, the studied groundwater samples largely evolved from [Formula: see text], mixed [Formula: see text] types, and [Formula: see text] types. The spatial distribution map and the hydrochemical analysis also gives a clear depiction of the fluoride (> 1.0 mg/l) and high iron (> 0.3 mg/l) contamination in groundwater quality, making it unsuitable for both drinking and irrigation. A fuzzy EDAS priority map has been prepared based on all the irrigation suitability parameters which concludes that the groundwater at the upstream and downstream section of the basin requires the most attention. Based on the highest priority for management, five zones have been delineated: very high (5.98%), high (22.31%), medium (16.39%), low (32.30%), and very low (23.02). The findings of this study will be beneficial to planners and policymakers as they can develop schemes to solve similar problems across the country.
当前的研究聚焦于利用R语言中的模糊逻辑技术和地理信息系统这一地下水质量新聚类工具,检测适合农业且管理优先级高的流域。已执行一种新的模糊聚类软计算技术,考虑电导率、硬度、氯化物、钠吸附比、残留碳酸钠、可溶性钠百分比、镁危害、渗透率指数、潜在盐度、残留碳酸氢钠、凯利比率、综合有害系数和可交换钠百分比等13个基本参数,来确定不同的水化学区域。所推导的模糊C均值聚类(FCM)优于其他现有的硬计算技术,如层次聚类、K均值聚类和凝聚聚类。它将采样点分为2个聚类组(FCM I和FCM II),这已通过模糊轮廓指数(0.85)、划分系数(0.76)、部分熵(0.68)和修正划分系数(0.52)得到验证。水文地球化学分析证实,岩石 - 水相互作用、化学风化和离子交换过程在研究区域的含水层系统中占主导地位。根据相关图,所研究的地下水样本主要源自[公式:见原文]、混合[公式:见原文]类型和[公式:见原文]类型。空间分布图和水文化学分析也清晰描绘了地下水中氟化物(>1.0毫克/升)和高铁(>0.3毫克/升)污染情况,使其不适用于饮用和灌溉。基于所有灌溉适宜性参数绘制了模糊EDAS优先级图,得出该流域上下游的地下水最需关注的结论。基于最高管理优先级,划定了五个区域:极高(5.98%)、高(22.31%)、中(16.39%)、低(32.30%)和极低(23.02%)。本研究结果将对规划者和政策制定者有益,因为他们可以制定方案来解决全国范围内的类似问题。