Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China.
Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, Guizhou, 550018, P. R. China.
Adv Mater. 2023 Jun;35(25):e2300935. doi: 10.1002/adma.202300935. Epub 2023 Apr 28.
As promising hydrogen energy carrier, formic acid (HCOOH) plays an indispensable role in building a complete industry chain of a hydrogen economy. Currently, the biomass upgrading assisted water electrolysis has emerged as an attractive alternative for co-producing green HCOOH and H in a cost-effective manner, yet simultaneously affording high current density and Faradaic efficiency (FE) still remains a big challenge. Here, the ternary NiVRu-layered double hydroxides (LDHs) nanosheet arrays for selective glycerol oxidation and hydrogen evolution catalysis are reported, which yield an industry-level 1 A cm at voltage of 1.933 V, meanwhile showing considerable HCOOH and H productivities of 12.5 and 17.9 mmol cm h , with FEs of almost 80% and 96%, respectively. Experimental and theoretical results reveal that the introduced Ru atoms can tune the local electronic structure of Ni-based LDHs, which not only optimizes hydrogen adsorption kinetics for HER, but also reduces the reaction energy barriers for both the conversion of Ni into GOR-active Ni and carboncarbon (CC) bond cleavage. In short, this work highlights the potential of large-scale H and HCOOH productions from integrated electrocatalytic system and provides new insights for designing advanced electrocatalyst for low-cost and sustainable energy conversion.
作为有前途的氢能载体,甲酸 (HCOOH) 在构建完整的氢能经济产业链中发挥着不可或缺的作用。目前,生物质升级辅助水电解已经成为一种有吸引力的替代方法,可以以具有成本效益的方式共同生产绿色 HCOOH 和 H,同时提供高电流密度和法拉第效率 (FE) 仍然是一个巨大的挑战。在这里,报告了用于选择性甘油氧化和析氢催化的三元 NiVRu 层状双氢氧化物 (LDHs) 纳米片阵列,在 1.933 V 的电压下可产生 1 A cm 的工业级电流,同时表现出相当高的 HCOOH 和 H 生产率,分别为 12.5 和 17.9 mmol cm h ,FE 分别接近 80%和 96%。实验和理论结果表明,引入的 Ru 原子可以调整 Ni 基 LDHs 的局部电子结构,这不仅优化了 HER 的氢吸附动力学,而且还降低了 Ni 转化为 GOR 活性 Ni 和碳-碳 (CC) 键断裂的反应能垒。总之,这项工作突出了从集成电催化系统中大规模生产 H 和 HCOOH 的潜力,并为设计用于低成本和可持续能源转换的先进电催化剂提供了新的见解。