Sun Yan, Zhang Xiannan, Guo Hairui, Li Wenjiang, Liu Huiling, Wang Cheng
Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 P. R. China
College of Materials Engineering, Shanxi College of Technology Shuozhou 036000 P. R. China.
Chem Sci. 2025 Jun 19. doi: 10.1039/d5sc01106j.
The urea oxidation reaction (UOR) is emerging as a thermodynamically favorable alternative to the oxygen evolution reaction, offering significant potential for energy-efficient H production and simultaneous treatment of urea-rich wastewater. However, the 6 e transfer process of the UOR results in sluggish kinetics, necessitating the development of highly efficient electrocatalysts. Herein, a Janus charge distribution surface is constructed by incorporating phosphorus (P) into the NiS/CoS heterojunction to enhance the UOR performance and accelerate urea-assisted H production. The P incorporation facilitates electron transfer from NiS to CoS, creating a local electrophilic/nucleophilic interface that enhances the adsorption of urea molecules with the electron-withdrawing C[double bond, length as m-dash]O group and electron-donating amino groups. As a result, the modified P-NiS/CoS exhibits ultralow potentials of 1.22, 1.30 and 1.39 V ( the reversible hydrogen electrode) to reach 10, 100 and 1000 mA cm for the UOR, respectively. Remarkably, when alkaline urine is used as the electrolyte, the P-NiS/CoS catalyst, functioning as a bifunctional electrocatalyst in an anion-exchange membrane electrolyzer, can stably deliver a high current density of 1000 mA cm for H production over 180 h. This work highlights the importance of designing electrocatalysts by activating interfacial charge distribution to enhance reactant adsorption and trigger chemical bond cleavage.
尿素氧化反应(UOR)正逐渐成为一种热力学上有利的析氧反应替代反应,在高效制氢和同步处理富尿素废水方面具有巨大潜力。然而,UOR的6电子转移过程导致动力学迟缓,因此需要开发高效的电催化剂。在此,通过将磷(P)引入NiS/CoS异质结中来构建Janus电荷分布表面,以提高UOR性能并加速尿素辅助制氢。P的引入促进了电子从NiS向CoS的转移,形成了一个局部亲电/亲核界面,增强了尿素分子与吸电子的C=O基团和供电子氨基的吸附。结果,改性后的P-NiS/CoS在UOR达到10、100和1000 mA cm时分别表现出1.22、1.30和1.39 V(可逆氢电极)的超低电位。值得注意的是,当使用碱性尿液作为电解质时,P-NiS/CoS催化剂在阴离子交换膜电解槽中作为双功能电催化剂,能够在180 h以上稳定地提供1000 mA cm的高电流密度用于制氢。这项工作突出了通过激活界面电荷分布来设计电催化剂以增强反应物吸附和触发化学键断裂的重要性。