Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain; Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.
Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Syst Appl Microbiol. 2023 May;46(3):126416. doi: 10.1016/j.syapm.2023.126416. Epub 2023 Mar 15.
Current -omics methods allow the collection of a large amount of information that helps in describing the microbial diversity in nature. Here, and as a result of a culturomic approach that rendered the collection of thousands of isolates from 5 different hypersaline sites (in Spain, USA and New Zealand), we obtained 21 strains that represent two new Salinibacter species. For these species we propose the names Salinibacter pepae sp. nov. and Salinibacter grassmerensis sp. nov. (showing average nucleotide identity (ANI) values < 95.09% and 87.08% with Sal. ruber M31, respectively). Metabolomics revealed species-specific discriminative profiles. Sal. ruber strains were distinguished by a higher percentage of polyunsaturated fatty acids and specific N-functionalized fatty acids; and Sal. altiplanensis was distinguished by an increased number of glycosylated molecules. Based on sequence characteristics and inferred phenotype of metagenome-assembled genomes (MAGs), we describe two new members of the genus Salinibacter. These species dominated in different sites and always coexisted with Sal. ruber and Sal. pepae. Based on the MAGs from three Argentinian lakes in the Pampa region of Argentina and the MAG of the Romanian lake Fără Fund, we describe the species Salinibacter pampae sp. nov. and Salinibacter abyssi sp. nov. respectively (showing ANI values 90.94% and 91.48% with Sal. ruber M31, respectively). Sal. grassmerensis sp. nov. name was formed according to the rules of the International Code for Nomenclature of Prokaryotes (ICNP), and Sal. pepae, Sal. pampae sp. nov. and Sal. abyssi sp. nov. are proposed following the rules of the newly published Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). This work constitutes an example on how classification under ICNP and SeqCode can coexist, and how the official naming a cultivated organism for which the deposit in public repositories is difficult finds an intermediate solution.
目前的组学方法可以收集大量信息,有助于描述自然界中的微生物多样性。在这里,由于一种培养组学方法,从 5 个不同的高盐地点(西班牙、美国和新西兰)收集了数千个分离株,我们获得了 21 株代表两种新的盐杆菌属物种的菌株。对于这些物种,我们提出了 Salinibacter pepae sp. nov. 和 Salinibacter grassmerensis sp. nov. 的名称(与 Sal. ruber M31 的平均核苷酸同一性 (ANI) 值分别为<95.09%和 87.08%)。代谢组学揭示了具有物种特异性的判别谱。盐杆菌属菌株通过更高比例的多不饱和脂肪酸和特定的 N 官能化脂肪酸来区分;而 Sal. altiplanensis 通过增加糖基化分子的数量来区分。基于序列特征和推断的宏基因组组装基因组 (MAG) 的表型,我们描述了盐杆菌属的两个新成员。这些物种在不同的地点占主导地位,并且总是与 Sal. ruber 和 Sal. pepae 共存。基于来自阿根廷潘帕斯地区三个阿根廷湖泊的 MAG 和罗马尼亚 Fără Fund 湖的 MAG,我们分别描述了 Salinibacter pampae sp. nov. 和 Salinibacter abyssi sp. nov. (与 Sal. ruber M31 的 ANI 值分别为 90.94%和 91.48%)。Sal. grassmerensis sp. nov. 的名称是根据《国际原核生物命名法规》(ICNP)的规则形成的,而 Sal. pepae、Sal. pampae sp. nov. 和 Sal. abyssi sp. nov. 是根据新发布的《从序列数据描述的原核生物命名法规》(SeqCode)的规则提出的。这项工作说明了 ICNP 和 SeqCode 下的分类如何共存,以及对于难以在公共存储库中存放的培养物如何找到一个中间解决方案来进行官方命名。